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Abstract 

The theory of encoding memoryless information sources so  that the output can be 
transmitted with minimum ra te  and sti l l  satisfy a fidelity cr i ter ion based on a single 
le t ter  distortion measure is investigated. This report  extends and amplifies the theory 
developed by Shannon. A general proof of the Source Coding theorem for memoryless 
sources  and single letter distortion measures is presented using variable length codes. 
It is shown that this proof is more generally applicable than Shannon's previously derived 
block coding results;  moreover,  without some additional restrictions,  the coding the- 
orem is false i f  only block codes a r e  permitted. It is also shown that the convergenceof 
encoder r a t e  to R(D) (the minimum ra te  necessary to achieve average distortion D) with 
increasing block length n, can be made at least as fast as (log n)/n. Equivalent theories 
of source coding are developed for cases  in  which: (i) the fidelity cri terion requires  
every le t ter  to be reproduced with l e s s  than a fixed distortion, ra ther  than merely 
achieving this performance on the average; (ii) there  a r e  several  fidelity c r i te r ia  that 
must be satisfied simultaneously; and (iii) the source outputs are corrupted by a noisy 
channel before being furnished to the encoder, Means of calculating or estimating R(D) 
for sources  with a difference distortion measure are developed by showing conditions 
under which R(D)is  equal to a more easily calculable lower bound developed by Shannon. 
Even when equality does not hold, we  show that R(D) approaches this bound as D - 0 for  
all continuous sources ,  and that for discrete sources ,  there is always a nonzero region 
of small D where there  is equality. R(D) for a discrete source and distortion measure 
d . .  = 1 - 6..  is calculated exactly for all D, thereby allowing calculation of the minimum 
1J 1J 

achievable symbol e r r o r  probability when transmitting over a channel of given capacity. 
Finally, as an  application of the theory, we examine quantizers as a class of source 
encoders, and show that the ra te  (output entropy) and distortion of such devices is bounded 
away from R(D), but is usually quite close. 
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b I. INTRODUCTION 

In the years  s h c e  the publication of Shamon's classic paper,' which marked the 
beginning of information theory, the bulk of the research  effort in this field has been 
directed toward communication over noisy channels. Some investigators have found 
tight bounds on the r a t e  a t  which the probability of e r r o r  of codes can be made to vanish 
as a function of code r a t e  and block length; others have attempted to  delineate the 
classes  of channels for  which coding theorem could be proved; and sti l l  others have 
worked to find practically implementable coding systems that would approach the per- 
formance that the coding theorem shows to be possible. The prospect of reliable com- 
munication has indeed been a powerful attraction to researchers ,  and in  the past decade 
many clever schemes toward this end have appeared. 

With all of this attention to channel coding, there  has been, at least  until recently, 
very little interest  in the theory of the related field of source coding. Although there  
had been previous work on bandwidth compression of certain sources,  such as speech 
(vocoders) and pictures, a mathematical discussion of encoding, or digitizing, an infor - 
mation source so  that i t s  outputs can be reconstructed from the code within a desired 

2 fidelity limit w a s  f i rs t  presented by Shannon in his original paper, and again in 1959. 
ltRate-Distortion Theory," a s  this branch of information theory is often called, attempts 
to answer questions about the smallest number of bits or, almost equivalently, the 
minimum channel capacity, which is needed on the average to adequately describe the 
outputs of a n  information source to some user. The assumption here is that a l e s s  than 

perfect reproduction of the source may be adequate, for clearly i f  only perfect recon- 
struction is to be tolerated, this number of bits is just equal to  H(X), the source 
entropy, and so there is no problem. 

Suppose then, that the user defines "adequate reproduction" by specifying a distor - 
tion measure d(x,y)  - a function that te l ls  how unhappy he is when the source really 
produced a n  output x, and he is given y as the representation. 
is that this distortion be less  than some specified amount on the average; that is, 

The fidelity cri terion 

The problem faced by the communications engineer is to  design an economical system 
that will  satisfy the user ,  and since the cost is often proportional to the number of bits 
to be transmitted, we would like to know the minimum number of bits required per 
source output to yield the desired fidelity. For example, the source might produce 
sequences of independent Gaussian random variables, and the user  might require the 
mean-square e r r o r  (the average of the squared differences between the source output 
and reconstructed version) to  be below a specified value. Equivalently, one might ask  

for the minimum possible average distortion when a fixed number of bits per source 
output is available for  the representation. This report  deals with these kinds of ques- 

tions. 
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It does not seem necessary to give very much in the way of motivation for research' 
in this area;  the relevance of these questions to  telemetry and related fields should be 
obvious. Unfortunately, we shall see  that the present state of the theory is that these 
questions can be answered only for the most simple of sources and distortion measures ,  
and any application to rea l  sources st i l l  l ies  in the future. One must learn to walk 
before he can run, and so, with this in mind, let us proceed with the formal develop- 
ment of the theory of source encoding. 

By an  information source, we mean any device that puts out a stochastic signal of 
interest to some user .  The source will  be called time discrete i f  i t s  output can occur 
only at regularly spaced intervals, and if this output is a waveform, the source will  be 
termed time continuous. We shall be interested exclusively in time-discrete sources  
here,  and shall symbolize a sequence of n source outputs by a v e c t o r 5  = x1x2 . . . x n 
(see Fig. 1). Each of these x's is some element of the source alphabet X, which is the 
set  of all possible outputs that might occur. If X is a finite set ,  we say that the source 
is discrete,  and if  X is the set  of r ea l  numbers R, then we say that the source is ampli- 

+ REPRODUCER 
X 

SOURCE * ENCODER 
= 1  =2 * . .  x1 ... x n 

- tude continuous, or sometimes just continuous. Although X may be a more general  space, 
we shall be concerned primarily with sources  having one of the two above-mentioned 

Y 
t 

Y 1  ..' Y" 

alphabets. 
The behavior of the source is governed by a probability measure which assigns a 

probability o r  a probability density to any combination of source outputs determined by 
whether the source is discrete or continuous. If the probability of any event a t  a par- 
ticular time is statistically independent of the outputs at all other t imes so that 

n 

i= 1 
P r ( x l . .  . xn) = II Pr(xi) ,  

then we s a y  that the source is memoryless. 
the univariate probability (mass  or  density) function p(x). We shall  deal only with mem- 
oryless sources in this report. 

In this case,  the source is described by 

Fig. 1. The source encoding configuration. 

A source encoder is any device that maps a sequence of source outputs x l . .  . x into 
a sequence of digits z1z2 . .  . taken from some finite alphabet Z .  We refer  to this num- 
ber n a s  the block length of the encoder. We do not assume that a l l  5 blocks produce z 
sequences of equal length. This digital s t r eam is assumed to be furnished uncorrupted 

n 
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.to the receiver,  which uses  it to construct a sequence y = y l . .  . yn of le t ters  f rom Y, 
the reconstruction alphabet, which is then presented to  the customer. This set  Y is 
often identical with X, although this is not required. Figure 1 shows this configuration. 
It can be seen that since the number of encoder output sequences is countable, no gener- 
ality is lost (or gained) by considering the encoder to  consist of two sections, as shown 
in Fig. 2. The f i rs t  box takes the n source outputs and produces an integer w, which 

- 

x, ... x W 
n LOSSLESS 

MAPP I N G 
SOURCE ENCODER - d z, z2 ... 

Fig. 2. An equivalent encoding configuration. 

is then encoded into the z sequence by a lossless,  reversible mapping. The average 

length of the z sequence is directly related to the entropy of the w distribution, H(W), 
24 by the noiseless coding theorem (cf. Abramson 

is a non-negative function telling how much distortion is incurred when the receiver puts 
out y when the source had actually produced x. A distortion measure of this form (a 
function of only one X let ter and one Y letter)  is called a single letter distortion mea- 
m e ,  and the distortion between blocks is taken to be 

). 

We suppose that the user  specifies a distortion measure d(x,y),  x E X, y E Y, which 

If X and Y a r e  finite, then d(x,y) is a matrix, and i f  each is the set  of r ea l  num- 
bers ,  then d(x,y)  is a function of two rea l  variables. It is clearly possible to  formulate 
much more general distortion measures between blocks, but we res t r ic t  ourselves to  
the single-letter distortion measure because this is the only type for which any signifi- 
cant resu l t s  have been obtained. We now define the average distortion (per le t ter)  of the 
encoder to  be 

and i t s  rate (in nats) to be 

1 R = ~ E { l e n g t h  of Z sequence) log, J, 

3 
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where J is the alphabet s ize  of Z. Both expectations are taken with respect to the source 
distribution, and clearly - y is determined uniquely byx .  

Finally, a subset of the c lass  of all encoders which wi l l  be of interest  to us  consists 
of those for which the number of Z digits put out is the same for all input sequences. It 

can be seen that this is equivalent to the condition that the integer output w (see Fig. 2) 

can take on only a finite number of values, which number we denote M. This class of 

encoders will be called block encoders, and we  see  that for every source sequence x of 
length n, there are M = enR code words with le t te rs  taken from the reproduction alpha- 
bet which is available for choosing representation for s, where R is the ra te  of the block 
code. In the following discussion, we  shall consider the larger  class of encoders unless 
we specifically state that we  a r e  restricting our attention to block ones. 

Now since D is a measure of how unhappy the user  is on the average, and R is pro- 
portional to the effort we must expend in  the transmission, we would like to make both 
of these quantities as small  as possible. A s  one would expect, however, these two goals 
a r e  not compatible. So given the source p(x) and the distortion measure d(x,y),  w e  would 
like to know what is the smallest  ra te  consistent with the maintenance of D no greater  
than some specified level, or equivalently, what is the smallest  D that we can achieve if  
our ra te  is fixed. 

The answers to these questions are given by the rate-distortion function R(D), some- 
t imes called the information r a t e  of the source for a distortion level D. This function 
has the property that there  a r e  encoders having average distortion D, for which the r a t e  
can be made arbi t rar i ly  close to  R(D) by choosing the block length large enough. Con- 
versely, there are no such encoders with r a t e s  less than R(D). Recall that by block 
length, we mean the number of source outputs that the encoder operates on a t  one t ime, 
and this number is not related to  the average number of Z digits put out by the encoder. 

Fig. 3. Source and tes t  channel. 

R(D) might have been defined directly as the g.1.b. of the r a t e s  of all encoders (of 
any block length) that have average distortion, at  most D. In this case,  it  would be nec- 
essary  to give methods by which R(D) might be calculated. The formalism developed 
differently, however; Shannon, the f i rs t  wri ter  on this subject, chose to  define R(D) in 
a manner that indicates, a t  least  in  principle, how to find this function, and then he 
proved that the function as he defined it did indeed have the desired properties. 

His definition of R(D) for a memoryless  t ime-discrete source,  with a difference 

4 



5 

distortion measure,  is a s  follows: Consider a discrete memoryless channel, character-  
ized by a set  of transition probabilities {p(yIx)}, whose input and output alphabets a r e  

the same as the source alphabet X, and the reconstruction alphabet Y, respectively. 
Suppose that the source is connected directly to the channel, as in Fig. 3. Then the p(x) 
and p (y (x )  functions induce a joint probability measure on the X and Y spaces,  and we 
can define 

R(D) = Min I(X;Y), 

(P(Y I XI} 

where the minimization over all possible channels is performed, subject to the con- 
s t r  aint 

It is possible that D wi l l  be so small  that there is no channel that satisfies this con- 
straint ,  in which case R(D) just does not exist. If this is not the case,  then it can be 
shown that there  is always a channel whose mutual information is actually equal to R(D), 
so that it is valid to write Min instead of g.1.b. Any channel like that shown in Fig. 3 wi l l  

be called a test channel, and the one that achieves the minimum ra t e  will be re fer red  
to  as the optimum test  channel. 

The source coding theorem states  that with some mild restrictions on p(x) and d(x,y),  
R(D) is the minimum achievable encoder rate that is consistent with E{d(x,y)} C D. 
In other words,  for any E > 0, there  a r e  encoders with E{d(x,y)) S D t E and 

ra te  no grea te r  than R(D). Conversely, no encoders exist with average distortion D and 
ra te  l e s s  than R(D). This result  is analogous to the channel-coding theorem which 
s ta tes  that the capacity of a channel (the max of a mutual information) is the largest  sig- 
nalling ra te  that is consistent with the requirement that arbi t rar i ly  small  probability of 

e r r o r  be achievable. Another (unfortunate) analogy is that, like channel capacity, R(D) 
even as defined above is difficult to calculate. 

We shall  defer the proof of this theorem to Section 11. It is not difficult to show that 
except a t  D = Dmin, the smallest  value of D for which R(D) is defined, the approach to 
any point on the R(D) curve need not be along a horizontal line in the R-D plane, as in  the 
statement of the theorem above. Rather, it  may be along any path lying above the R(D) 
curve. For  D = Dmin, this trajectory may be anything except vertical, for the same 
reasons that we cannot have zero  probability of e r r o r  in channel coding, even at  r a t e s  
Strictly below capacity. The interested reader  who feels unsure of himself (or  lazy) may 
find the proof of these statements in Shannon's paper.2 Some resul ts  concerning the ra te  
a t  which this  approach occurs as a function of encoder block length have also been 
obtained by Pi lc  
vanishes exponentially with n, for source coders the approach seems to be something 
like n-'. This subject wi l l  be discussed in greater depth in section 2.3. 

7 and Goblick.3 Unlike channel coding, in which the probability of e r r o r  

Let US now look a t  Some examples and properties of rate-distortion functions. 

5 



I 

I 

u) 

0 c 
c 

LL 

0.5 

1 Fig. 4. (a) R(D) = F l o g  D. 

c 

R (bits) 

(b) R(D) = 1 t D log D t (1-D) log (1-D). 

Figure 4a shows R(D) for a time-discrete, amplitude-continuous memoryless source with 
a unit variance Gaussian probability density function, and the distortion measure 

2 d(x,y) = (x-Y) . 
In this case, X and Y are both the real line, and the functional fo rm of R(D) is 

O < D G l  1 

D >  1 
R(D) = 

Figure 4b shows R(D) for a binary, equiprobable letter source,  with the distortion mea- 
s u r  e 

i f x = y  r o  

1 otherwise 
d(x,y) = 1 - 6 

s o  that the distortion between two blocks is just  the fraction of places in  which they dif- 
fer. Here w e  have 

R(D) = 1 - H(D). 
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We shall defer to Chapter I11 the discussion of simple methods by which these func- 
tions, and others,  may be calculated. W e  merely mention that attempts at  finding R(D) 
by directly attacking the minimization in the defining relation have not been siiccessful. 

One can proceed up to a point (as many previous researchers  have done) as follows: Since 
I(X;Y) is convex in  the (p(y I x)], it  is necessary and sufficient that 

with equality unless p (y )x )  = 0. The undetermined multipliers X and p(x) are to satisfy 
the constraints E{d(x,y)) = D and Z p(ylx) = 1, respectively. Since 

where q(y) = C p(x) p(ylx), the inequality becomes 
X 

or 

-1 d(x,y)  

A b ,  x) 
P(YIX) 2 q(y) e for all x,y,  

where p(x) has been absorbed in  the constant A(X,x) = Z q(y) e -’ d(xpy) ,  and equality 
Y 

holds unless p(y1x) = 0. But the right-hand side is non-negative, and so equality 
must a lso hold, even when p(y1x) = 0. This gives us  a set  of simultaneous equations 
that presumably could be solved for the p(ylx) i n  any particular case, but the lack of 
any simple general  expression for the solution renders  this  approach of little compu- 
tational use. 

Henceforth, we shall assume that all sources are memoryless and time-discrete, 
unless it is specifically stated otherwise. Note that the curves shown a r e  continuous, 
monotone decreasing, and convex downward. In fact, it is easy to see that all ra te-  
distortion functions must  have these properties. Clearly, R(D) is nonincreasing because 
increasing D does not delete any element (channel) from the se t  of permissible channels 
over which the mutual information is minimized. To see that R(D) is convex downward, 
suppose that R1, D1 and R2, D2 a r e  two points on the R(D) curve whose test channels a r e  
pl(yIx) and p2(yIx), respectively. Then the channel with p(ylx) = apl(ylx) + (1-a) p2(yIx), with 
0 C a S 1, has  distortion aD1 t (l-a)D2 and rate less than or  equal to aRl + (1-a)R2, since 
mutual information is convex downward as a function of the transition probabilities. Thus 
the minimum mutual information to get distortion at most aD1 + (l-u)D2 can be no 
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greater  than aR1 t ( l-u)R2. Finally, convexity implies continuity of the curve, except’ 
perhaps at  the end points. 

Comparing Fig 4a and 4b further,  we see  that as D - 0,  R(D) - co for the Gaussian 

source,  while R(0) = 1 bit for the binary source. This behavior is what we  would expect 

because we know that to perfectly reproduce an equiprobable binary source,  we need one 
bit per source output, while exact specification of a real number cannot be done in a 

finite number of digits. Furthermore,  we see  that both curves have a finite intercept on 
the D axis. This point, called Dmax, is that average distortion that can be obtained even 
when nothing is transmitted (R = 0). For the binary case,  this is 1/2  because, with no 
information at  all,  we could guess a t  all of the source le t te rs  and be right half of the 
time on the average. Similarly, for the Gaussian source,  we could always put out zero  
as our reproduction, and the average distortion would be 

2 2 Dmax = E ((x-0) 1 = c = 1 .  

In general, we  have 

Min 
Dmax = yc:y E x {d(x,y)), 

since guessing any letter other than that one which minimizes this expectation can only 
increase the distortion. It is not necessary that Dmax be finite, but it wi l l  be so in most 
of the sources and distortions with which we deal. 

At this point, we may also note that in both of our examples the smallest  possible 
distortion was zero. This need not be true; in general, the smallest  D for which R(D) 
is defined 

Thus the range of D that is of interest  is Dmin S D S Dmax, since R(D) = 0 for D >Dmax 
and is not defined for  D < Dmin because it is impossible to get such distortions. The fol- 

Min d(x,y),  and therefore Dmin, may be taken to Y E Y  
lowing theorem shows, however, that 
be zero without loss  of generality. 

Theorem 1: Suppose Rl(D) and R2(D) are the rate-distortion functions for  the same 

source,  and distortion measures  d l (x ,  y) and d2(x,y),  respectively. Suppose dl(x,  y) = 
adZ(x,y) t p(x), where Q is a positive constant, and p(x)is any function of x alone. Then 

Rl(D) = R2(-), D-p where p = Ex{p(x)). 

Proof: By definition, 

R1(D) = Min I(X;Y), 

where the minimization is subject to  the constraint 

8 



But this constraint can be written 

o r  

f rom which the result  follows by definition of R2( ). 

average number of digits that an encoder can put out and s t i l l  satisfy the fidelity criterion. 
This is not the only possible interesting definition of this  quantity. A second one i s  the 
minimum rate necessary f o r  a block encoder to satisfy the fidelity cri terion(that is, all 

of the z sequences a r e  forced to have the same length). In the f i rs t  case,  we a r e  inter-  
ested in the smallest  possible entropy of the distribution of the integer w in Fig. 2 ,  

and in the second case,  we ca re  only about the number of these integers with nonzero 
probability. Still a third “source ra te”  is the smallest channel capacity that wi l l  allow 
the transmission of the source outputs with satisfactory distortion, 

The relationship between the source and distortion measure on the one hand, and 
the strength of statements that can be made about representing and transmitting the 
source outputs on the other, will be discussed in more detail in Section 11. W e  shall s ee  
there  that the three r a t e s  presented above (the minimum variable length encoder ra te ,  
the minimum block encoder ra te ,  and the minimum channel capacity that is necessary 
to satisfy the fidelity cri terion) are not, in  general, the same,  and that the conditions 
needed to prove equality with R(D) a r e  most general  for  the variable length ra te  and 
least for the channel capacity. 

Starting from the basic source-coding theorem described above, there  a r e  many 
avenues of generalization open, most of which are discussed by Shannon.’ If the source 
is not memoryless,  one can s t i l l  prove a coding theorem by defining R(D) as a Min I(X;Y) 
of blocks of source and reproduction letters. Similarly, the distortion measure 
might not be a single-letter measure,  i n  which case one must again go to blocks of 

source outputs to get the desired results.  In neither of these cases  is the theory entirely 
satisfactory because the task of calculating R(D) f rom i t s  definition, difficult enough in  
the single-letter case,  is virtually impossible. 
ory for which R(D) is known is a colored Gaussian source with a mean-square e r r o r  
distortion, and the way this problem is solved is by using the properties of the Gaussian 
distribution to change coordinates so  that one gets a new se t  of random variables that 
are independent. Such a rotation changes neither the Euclidian metric nor, consequently, 
the mean-square e r r o r .  Even the problem of finding R(D) for a binary Markov source 
that repeats  i t s  last  output with probability p f 1/2, with frequency of e r r o r  as the dis- 
tortion measure,  has res i s ted  substantial efforts a t  ~ o l u t i o n . ~  Indeed, this is a special 

In the discussion up to this point, the Itrate” of a source w a s  taken to be the smallest  

The only example of a source with mem- 
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case of a classic unsolved problem (Dobrushin's 2Znd).10 Thus the theory as it stands ' 
now is of limited use in these cases.  

The potential applications of the theory are obvious. In a given communication prob- 
lem one can determine what the smallest  possible distortion can be, or  what is the smal-  
lest  number of bits that he must use to achieve a specified fidelity. The performance of 

any proposed system can then be compared with this theoretical minimum. Thus far, 
there  have been a few comparisons of this sor t ,  involving analog modulation4 and quan- 
tization schemes, but these have been restricted to the consideration only of Gaussian 
sources with a mean-square e r r o r  fidelity criterion. 

calculation of R(D), and applications. The f i rs t  involves such things as examination of 
the conditions necessary for proving a coding theorem and consideration of the r a t e s  of 
encoders with finite block lengths. The second reflects the fact that, like channel capac- 

ity, R(D) is not usually easy to calculate, so  a body of techniques has been developed 
for  evaluating, o r  at  least  approximating, this function in certain interesting cases.  
Finally, the third a rea  involves the examination of practical encoding schemes in the 
light of the theory, and the attempt to find ways of improving their performance. 
tions 11, 111, and IV w i l l  each be devoted to one of these topics. 

The problems of source coding theory fall roughly into three categories: theory, 

Sec- 
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11. THEORETICAL DEVELOPMENT 

We have presented, for a specified source and distortion measure,  definitions of 
the information ra te  of an encoder for this source, and of the function R(D). We inti- 
mated in  Section I that these quantities were related by the fact that no encoder for the 
source having an  average distortion D could have a ra te  less than R(D), and that encod- 
ers existed with r a t e s  arbi t rar i ly  close to  this lower bound. The last  existence statement 
is usually re fer red  to as the "Source Coding Theorem," which in the r e s t  of this work 
will be shortened to  "coding theorem" when no confusion is likely to  occur. The fact that 
R(D) is a lower bound on encoder r a t e s  is then the converse to this theorem. 

W e  shall  now prove the coding theorem and i t s  converse for discrete sources with 
a rb i t ra ry  distortion matrices,  and for continuous sources with only a very mild res t r ic -  
tion on d(x,y), when the class of encoders is that presented in Section I. Then we  exam- 
ine some possible definitions of information rate other than the minimum ra te  of all 

encoders i n  this c lass ,  and present conditions under which these "rates"  a r e  a lso equal 
to R(D). Furthermore,  we show that the approach of encoder ra te  to  R(D) as a function 
of block length can be made at  least  as fast  as - , For discrete sources ,  a "zero 
distortion ra te"  is then defined which is similar to Shannon's zero-error  capacity of 
noisy channel," and a simple expression for this r a t e  and some of i t s  applications to 
questions about the capabilities of block codes are given. Lastly, some extensions of 
the basic theory are presented. These include: (i) the information ra te  for a fidelity c r i -  
terion that requires  every letter to be encoded with a given accuracy, ra ther  than the 
weaker condition that this be t rue merely on the average over a block; (ii) the r a t e  when 
several  fidelity criteria must be satisfied simultaneously; and (iii) the ra te  when the 
encoder must operate on a corrupted version of the source outputs. 
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n 

2.1  CONVERSE STATEMENT 

Let us  f i r s t  prove the converse to the source coding theorem, which states that R(D) 
is the smallest  ra te  that any encoder giving average distortion D may have. It is appli- 
cable to  all c lasses  of encoders, and is a direct resul t  of the definition of R(D) as a min- 
imum mutual information. The resul ts  of this section a r e  essentially due to  Shannon, 
with only slight modifications necessitated by our definition of source encoders. 

W e  shal l  assume, for  the present, that w e  have a block encoder taking n le t te rs  
f rom the source and producing m symbols which a r e  sent over a memoryless channel 
of capacity C. Our decoder takes the channel outputs and produces n le t ters  f rom the 
reproduction alphabet. This configuration is shown in Fig. 5. * n *  
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Suppose that the average distortion of this scheme is d . We show that C 2 m R(d ) 

by the following string of inequalities: 



w1 ... wrn 
rn 

5- 
z1 . * . z  x1 ... x n * CODER + CHANNEL- 

Fig. 5. Channel with encoder and decoder. 
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> nR(d*) by the definition of R(D). 

The only non-obvious inequality that w a s  used w a s  

H(XnIyn) = H(X1(Y1, .  . Yn) t H(XZ(XIY1. .  .Yn)  + . . . t H(XnIXl. .  . Xn,lyl.. .yn) 

S H(X1 IY1) t . . . t H(Xn(Yn). 

It seems clear that this result  holds also for channels with memory, as long as capac- 
ity can be meaningfully defined. Discussion of such problems i s ,  however, beyond the 

Fig. 6. Variable-length encoder. 

scope of this work. This result  shows that no matter what kind of processers  are used, 
the capacity of the channel connecting source to sink determines a lower bound on the 
achievable distortion. 

12 



Now, in particular, if the connection between source and user is an encoder such as 
that shown in Fig. 2 (which, we recal l ,  is equivalent to  that of Fig. l ) ,  then we can 
obtain the desired result  that i f  i t s  average distortion is D, i t s  ra te  is iower-bounded by 
R(D) as follows: By the lossless  source-coding theorem, the expected number of z 

digits put out is no less than H(W), the entropy of the integer output distribution (see 
Fig. 6). 

Thus we can write 

Eilength of z sequence} 2 H(W) 

= I(X";W), 

since W is completely determined by xl. . . x But, by the data-processing theorem, n' 

I(X"; W) 2 I(X";Y") 

2 n R(D) 

which completes the proof. 

2.2 POSITIVE CODING THEOREMS 

There a r e  a t  least  three possible definitions of the ra te  of a source relative to a 

fidelity cr i ter ion which a user  might want to make, and the distinctions among these 
wil l  be made clear before attempting to prove coding theorems about them. 

F i r s t ,  one can define the ra te ,  a s  w a s  done in Section I, as the minimum ra te  over 
the general  c lass  of encoders presented there. Since the number of digits put out by 
the encoder may vary, such encoders wi l l  henceforth be called "variable length encod- 
e r s , "  and we shall denote the minimum variable-length encoder ra te  commensurate with 
a distortion level a t  most D by Rv(D). Second, one may want to consider only block 
encoders, and we define the "block coding" rate, Rb(D), to be the minimum ra t e  of all 
encoders of this c lass  that satisfy the given fidelity criterion. Third, the source r a t e  
might be taken to be simply the smallest  channel capacity (in bits per source output) 
such that the source can be block-coded and transmitted over any channel of this capac- 
ity with distortion arbi t rar i ly  close to some specified amount, and we let this ra te  be 
denoted Rc(D). 

- 

It is clear that 

R(D) c Rv(D) =Z Rb(D) S Rc(D), 

since we have established that R(D) was a lower bound on all of the other ra tes ,  and any 

source that can be transmitted over any channel of capacity C, as in  the third definition, 
can, a fortiori ,  be s o  transmitted over a noiseless channel of the same capacity, which 

process is identical with the block coding of the second definition. Finally, we have 
already seen  that block encoders a r e  a special case of variable-length encoders. 
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Furthermore,  it  is easy to see that these three r a t e s  a r e  not the same in general; 
although they will be for most cases. For  example, the four-letter discrete source with 

probability vector _p = (+, a, 8 ,  ' ) and distortion measure 

i f i = j  (0 
dij =I co otherwise 

can be encoded to achieve zero distortion by a variable-length encoder with ra te  1.75 bits 
(by a Huffman code), but to get this fidelity with a block code requires  2 bits per source,  
since in  a block of n outputs, there a r e  4" sequences of nonzero probability each of which 
must have its own code word to avoid having an  infinite distortion. Finally, Rc is infinite, 
since no channel capacity is sufficient to guarantee that the source can be transmitted 
with zero  distortion because the probability of e r r o r  cannot be made exactly equal to zero 
in general, but merely to approach this value. This st i l l  leaves a positive probability of 
an  infinite distortion if an e r r o r  occurs. 

Let us  now turn to the consideration of coding theorems for each of these three defi- 
nitions of rate. What we are after are conditions on the source and distortion under which 
each of these r a t e s  is equal to R(D), and proofs to this effect. It is convenient to s ta r t  
with the block encoder, and s ta te  the following theorem. 

Theorem 2: If the distortion matrix {d. .) for a discrete source satisfies the condi- 
11 

tion that at least one column has no infinite entries (that is, there  is an  output letter j 
such that d . .  is finite for  all source le t ters) ,  then for any D, Dmin < D G Dmax, there  
exist block encoders with r a t e s  arbi t rar i ly  close to R(D). Similarly, i f  the distortion 
function d(x,y) for a continuous source satisfies the condition that there  exists a y E Y 
such that Ex(d(x,y)) is finite, then the same conclusion holds. 

obtained 
the same result using different techniques. The simplest proof known to  the author is 

one constructed by Gallager,' based on contributions by Shannon, Goblick, and Stiglitz, 
and this is reproduced in Appendix B. This proof involves a random-coding argument, 
in which M = enR* code words of length n from the reproduction alphabet a r e  chosen 
randomly, and the probability of source sequences for  which there  is no code word 

resulting in distortion a t  most D , averaged over the ensemble of codes, is shown to 
approach zero as n becomes large i f  R >R(D). This establishes the existence of codes * * of r a t e  R with vanishing probability of exceeding a distortion of D . All that is left is 
to show that the r a r e  bad x sequences can be encoded with finite distortion Dm, so  that 
we can write 

11 

3 This theorem w a s  f i rs t  stated and proved by Shannon,' and la ter  Goblick 

* 
* 

* 
where po is the probability of sequences unencodable with distortion less than D . 
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.. * 
Since p approaches zero as n - coy the right-hand side approaches D . But the exis- 
tence of a finite Dm is established by the assumptions on the distortion in the statement 
of the theorem, which insure that there  is some output letter such that a code word with 
this letter in all positions has finite expected distortion with all source sequences. This 
code word can be added to  the code with negligible effect on the ra te ,  which establishes 
the result. 

0 

The argument above establishes the sufficiency of the stated requirements on source 
and distortion measure for a block-coding theorem to hold. It turns out that these con- 
ditions are necessary for Rb(D) to equal R(D) for all D, but that they a r e  not necessary 
for equality to hold merely over a range of D. We shall defer the proof of these facts 
to section 2.5, where the capabilities of block coders will be examined in depth. The 
necessity of some kind of requirements on the source,  distortion measure,  and distor- 
tion level for Rb(D) to equal R(D) se t s  the class of block encoders apart  from variable 
length, for which we  wi l l  find that no such assumptions a r e  needed. Basically, when we 
a r e  limited to M = enR code words, we need some finite distortion word or words to 
fall back on in the ra te  event that all other code words have too much distortion. It 
should be pointed out that these requirements a r e  not very restr ic t ive,  and a r e  sat is-  
fied by most interesting sources  and distortions. Obviously, any time that Dmax, the D 
at  which R(D) becomes equal to zero,  is finite, then the conditions for the theorem to be 
t rue are satisfied; however, we shall see in  section 2.5 that the converse of this state- 
ment is not true. 

Next, we turn to the third definition of rate - that of the smallest  channel capacity 
needed to achieve the desired fidelity. It is easy to see  that i n  the discrete case, a nec- 
e s sa ry  and sufficient condition on the distortion matrix for this ra te ,  Rc(D), to be equal 
to R(D) is that the distortion between each source letter and each output letter that must 
be used to achieve R(D), must be finite. This rather awkward statement is necessary to 
allow distortions such as 

L 

which can clearly be transmitted over channels of zero capacity, in spite of the fact that 
some distortions are infinite. The catch is that since only the second output letter is 
ever used, the channel decoder knows that no matter what is received from the channel, 
it must be mapped into this letter,  and no infinite-distortion reproduction is ever made. 
For  continuous sources,  the analogous condition is that Ex{d(x,y)} be finite for all y that 
must be used. 

For a discrete source,  the necessity of these conditions follows from the fact that 
all transit ions from source to  output le t ters  must be considered to have nonzero proba- 
bility, and s o  cannot have infinite distortion associated with them. The sufficiency can 
be proved as follows: Let Dm be the largest  d... We construct a block code of length n 
with M = enR code words, so  that the ra te  is R. These code words a r e  then encoded for 

1J 
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transmission over our noisy channel of capacity C. If we let pc be the probability that 
our encoder fails to produce a code word with distortion l e s s  than D , and pe be the 

* 
probability of a channel e r r o r ,  then we can write 

4 
But, by Theorem 2,  if R > R(D ), then pc can be made to vanish as n - m. Similarly, 
by the channel-coding theorem, i f  C > R, then p can be made arbi t rar i ly  small  as the 
block length of the channel code (not the same as n) gets large.  Thus, i f  C > R(D ), the 
upper bound on D approaches D , which is the desired result .  

Essentially the same argument holds for continuous sources,  for which a necessary 
and sufficient condition for transmission over a channel is that E{d(x, y .) I y(x)Py.} be 
finite for all code words y.. 

-J 
expectations. We see  that this condition is equivalent to E{d(x,y)} being finite for all y 
that must be used (that i s ,  for which q(y), the output density of the optimum test  chan- 
nel, is nonzero), since 

* e 

* 

- - J  _ _  - J  
In this case,  Dm may be taken as the largest  of all such 

i f  y(x) = yj  -- - 
p(x(_yj received in e r r o r )  = 

otherwise - 
A 

where A is simply a normalizing constant. 
We can now turn to the remaining definition of a source's  information r a t e  - 

that given in Section I. We have already shown that this is the most compre- 
hensive and general  of the three,  and we shall now give the proof that, in fact, 
it  is always equal to R(D). F i r s t ,  for a discrete source,  we have the following 
theorem. 

Theorem 3:  Let - p = (p, . . . pm) be the vector of letter probabilities of a discrete 
Then for any source having m let ters ,  and {dig be i ts  associated distortion matrix. 

D > Dmin, and any E > 0, there  exists an encoder with ra te  l e s s  than R(D ) t 6 whose 
average distortion is l e s s  than D . 

be the composition of x (that is, 1. is the number of t imes the j thsource letter appears 
in 2) .  To demonstrate the existence of encoders with ra te  and distortion arbi t rar i ly  near 
R(D), we consider a c lass  of such devices that operate as follows: The source sequence 
is taken and compared in a preset order with an arbi t rar i ly  long l ist  of code words, - yl ,  

olds actually dependent only on the composition of 5, and will soon be specified. 
integer k is then put out by the encoder. Clearly, the distortion introduced by the encoder 
when the sequence 2 is given to it is no greater  than dx, and thus the average distor- 
tion satisfies 

8 * 
* 

Proof: Let x= xl .  . . xn be a sequence of n outputs f rom the source,  and a= I,. . . B m  

J 

. . , until a yk is found such that d(x,yk) -- S ndx, where the dx a r e  distortion thresh- z 2  - 
The 

- 
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Such an encoder is not of the form described in Section I and shown in  Fig. 1, for which 
the theorem is stated, but it can be put into this form by adding a further coding s tep 
that maps integers into variable-length sequences from a finite alphabet. The proof that 
it is possible to do this s tep and have the average output sequence length arbi t rar i ly  
close to H(K), the entropy of the integer distribution, is given in Appendix A. Thus we 
need concern ourselves only with the entropy of this distribution, and if  R is the 
encoder's r a t e  per  source output, we can write 

n R = H(K). 

This quantity can be upper-bounded by 

H(K) S H(K, L) = H(L) t H(KIL), 

where L is the ensemble of x compositions. But 

= H(K1X). 

Thus 

Now to  make analysis possible, we resor t  to random-coding techniques, assuming 

that each le t ter  of each code word y.  is chosen randomly with univariate distribution 
pc(y) independently of all others. W e  shall find the expected encoder ra te ,  averaged 
over this ensemble of codes, and then, by the usual argument, we can a s se r t  that there  
must exist a t  least  one set  of y ' s  that gives performance as good as the average. In 
other words, there  is a code (a set  of - y's)  such that when it is used, the resulting H(Kl5) 
is no grea te r  than E (H(KI5)). 

--3 

L 

l 

Y 
We now define 

and since all of the code words are statistically independent, the k distribution for a 
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fixed x is just  

k- 1 
P(kI5) = qx(l-qx) 9 - _  

which is a geometric distribution. Appendix C shows that the entropy of such a dis t r i -  
bution with parameter q is 

H(q) 
H(K) =- 

q '  

and that this quantity can be upper-bounded by 

Thus 

s -log qx t 1. - 
Substituting this result  in Eq. 1, we  find 

This expression can be further upper-bounded by lower-bounding qx, which we do as 
n 

follows: By definition, d(x,_y) = Z d(xi, yi) which is, for fixed x, a-sum of independent 
i= 1 

random variables (not necessary identically distributed). For such cases ,  a slight mod- 

ification of techniques developed by Gallager '' enables us to write 

where s is a r ea l  negative parameter,  
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'and s is determined from the relation 

pk(s) = n dx. - - 

Finally, B is a constant, independent of x, and for large enough n can be lower-bounded 
by Bon-1/2, where Bo is a constant. The details of the derivation of this bound are given 
in Appendix D. 

Substituting relation (3)  in (2) ,  we obtain 

and d the average distortion threshold over all x sequences satisfies - 0' 

which upper -bounds the actual encoder distortion, as was shown before. 
W e  now define 

s o  that 

X € x "  - X i= 1 y. € Y  1 - 

= n 14s) 

Then Eq. 4 becomes 

n R n[spl(s)-p(s)] t H(L) - log B t 1. 

Similary, (5)  can be written 
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d = p.*I(s). 
0 

Finally, H(L)  can be bounded by 

H(L) f M log ( n t l ) ,  

since the composition vector has M components, each of which may take on no more  than 
n t 1 different values. 

Bounding B by Bon-'12, and dividing ( 6 )  through by n, we then have 

(Mt1/2)  log ( n t l )  1 - log Bo 
n + n  R G s ~ . ' ( s )  - P ( S )  t # 

in which the third t e rm is a combination of the bound on H(L) and the n -'I2 part  of the 
bound on B, with n upper-bounded by n +  1 in the last  case.  

Clearly, the last  two t e rms  of this expression can be made arbi t rar i ly  small  by 
choosing n large enough, so we have established that for any E > 0, there a r e  coding 
schemes for  which 

R s~'(s) - p(s) t E 

and (7) 

d = p'(s). 
0 

These expressions are s t i l l  dependent on pc(y), the distribution from which the code 
words were selected. Therefore it remains for u s  to show that by the proper choice of 
this distribution, the upper bound of (7)  is actually equal to  R(D). Suppose, then, that 
(p(y1x)) a re  the transition probabilities of the test  channel between X and Y that mini- 
mized I(X;Y) for a fixed distortion level D (which means that the I(X;Y)induced by this 
conditional distribution is equal to R(D )). It has been shown in Section I that p(y1x) 
must satisfy 

* 
* 

where 

and s is determined from the condition that the expected distortion between x and y be 
D , or * 
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* 2 p(x) P(Yl x) d(x, Y) = D * 

x, y 

Let us  select p (y) to be the output distribution of this test  channel, q(y). Then 
C 

R(D*) = I(X;Y) 

since the condition on the distortion becomes 

= I.'(s). 

Thus this  selection of pc(y) causes the upper bound on achievable coder ra te  and dis- 
tortion of Eq. 7 to be equal to R(D), which completes the proof. It is interesting to note that 
the coding theorem for block codes can be proved by using the machinery developed above. 

It is easy to see that in their  present form, the preceding derivations a r e  applicable 
only to  discrete sources,  because of the necessity of the composition argument that intro- 
duced the H(L) term.  Thus, t o  get the same theorem for continuous sources,  we must 
employ different tactics. Our encoders in this case  will be built around a block encoder, 
which is shown in Appendix B to be capable of satisfactorily encoding the source outputs 
with probability approaching one. F r o m  this  fact, it wi l l  follow that all that we have to 
do is add provisions for  encoding those rare bad x sequences with finite distortion and 
ra te ,  since the over-all distortion and r a t e  can then be made arbi t rar i ly  near those of 
the block code. To do this finite-distortion encoding, we simply quantize each compo- 
nent of 5 with an infinite-level, uniform quantizer, and show that the r a t e  of this device, 
which is just  the entropy of i t s  output, is finite. To this end, w e  state the following lemma. 
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Lemma: Suppose that the source density p(x) is such that p(x) log p(x) has a finite 
Riemann integral, and that there  exist constants E and A such that 0 < E, A < m and 
d(x, y) S A whenever I x-y 1 < E. Then there is an infinite-level quantizer that has a finite 
ra te  and distortion when operating on the given source. 

bility of I.,  the j th  interval. Let 
Proof: Let the line be quantized into intervals of length A, and let q. be the proba- 

J 
J 

Then the entropy of the discrete distribution {q.) is 
J 

j '  
s - 1 A p. log A p 

J 

1 
e '  since the function p log p is monotone increasing on 0 S p 2 - and A can be chosen 

small  enough s o  that q .  < - for all j. Thus 1 
J e  

H(Y) S A  (- z p j  log pj) - (4 c p j )  log A. 

But as A - 0 

and 

A c p j  -L 1 p(x) dx = 1. 

Since H(X) is finite by assumption, there  is some finite A I  for which the sums in Eq. 8 

a r e  finite. If we then choose A, the quantization interval spacing, equal to Min ( A l ,  E), 

we a r e  guaranteed that H(Y) is finite and that the distortion never exceeds A. Q.E.D. 
We a r e  now prepared to demonstrate an encoder for continuous sources  without the 

requirement that there  be an  output letter guaranteeing finite distortion, that w a s  neces- 
sa ry  for the proof of the block-coding theorem. The scheme that w e  shall use consists 
basically of a block code with M = enR* code words. The source sequence& to be 
encoded is compared with each of these code words in turn, and i f  one is found for which 
d(x, y)  S nD , this word is transmitted. W e  know from Appendix B that i f  R < R(D ), then 
codes exist for which the probability of failing to find such a code word, which we  denote 
po, is arbitrari ly small. In the rare event that no good code word (average distortion 

* * * 
-- 

22 



9 l e s s  than D ) is found, then the encoder simply quantizes each component of 5 indepen- 
dently, and sends the quantizer outputs. 

If we make the same assumptions about the source and distortion measure as in the 
statement of the lemma above, then we know that such a quantizer exists with finite dis- 
tortion and output entropy, which we denote D and R respectively. Then the over-all 
ra te  and distortion of the encoder satisfy 

9 q’ 

9 
D (l-po)D t p D o q  

and 

* 9 
which approach D and R , respectively, as p - 0. It is shown in Appendix A that the 
output of the infinite-level quantizer can be encoded by a variable-length code, so that 
our encoder can be put into the form of those described in  Section I. Since po can be 
made to approach zero i f  R is chosen greater than R(D), we have proved the source- 
coding theorem for continuous sources,  which we summarize in  the following theorem. 

Theorem 4: Suppose that the source entropy H(X) is finite (with the integral taken 
to be a Riemann integral), and the distortion measure satisfies the condition stated in 
the lemma above. Then source encoders exist (variable-length) with ra te  and distortion 
arbi t rar i ly  close to R(D). 

0 

9 

2.3 RATE OF APPROACH TO R(D) 

It has been shown that by allowing encoders to  have arbi t rar i ly  large block lengths, 
it  is possible to get r a t e s  and distortions approaching the R(D) function. 
practical and theoretical interest  to know more than this; we would like to  say not only 
what the limiting performance is but also how large a block length is needed to get close 
to this limit. Thus researchers  have been led to investigate the r a t e s  and distortions of 
encoders as a function of their block length, just as channel-coding theorists have sought 
the minimum probability of e r r o r  for specified code length. 

But i t  is of 

Since this  problem has been extensively studied by Pilc,’ we shall spend little t ime 
on it. Our contribution is merely to note that an upper bound to  the possible ra te  for  a 
given distortion as a function of the encoder block length can be obtained easily as a 

by-product of the resul ts  of section 2.2. This result agrees  with some obtained by Pilc, 
and i t s  derivation seems simpler. In fact, we see directly f rom Eq. 6 that there  exist 

devices acting on n source le t ters  and putting out an integer as output which guarantee 
distortion, at  most, D, and satisfy 

H(K) S n R(D) t c1 log n t c2, 

where H(X) is the entropy of the output distribution and the CIS a r e  constants. Appendix A 
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te l ls  us that this distribution can then be encoded into code words with le t te rs  i n  a finite* 
alphabet for which F, the average number of digits put out, sat isf ies  

- 
n 6 H(K) t 1. 

Therefore, since R,  the ra te  per source output, satisfies n R = 5, we have 

c log n c2  t 1 
t-. 1 

n R R(D) t 

Thus, in  general, we see  that the difference between R(D) and the encoder r a t e  can be 

made to decrease as fast as - . This algebraic ra te  of approach corroborates  the 

resul ts  of Pilc, and is in contrast to the exponential decay of e r r o r  probability for chan- 
ne1 codes. 

log n 
n 

log n 
There are  two sources for this 7 t e rm,  one being the bound on the probability of 

a randomly chosen code word having acceptable distortion, and the other being the bound 
on the entropy of the composition of the x sequences. It is the latter t e r m  that makes 
the derivation above valid only for discrete sources.  It seems unlikely that tighter 
resul ts  can be obtained for general  sources and distortions, since the probability bound 
that is used is the one that is best known. 

We shall s ee  in some examples of special cases  in which the symmetry of the dis- 
tortion measure and the q(y) distribution cause the d(xi,yi) random variables to  be iden- 
tically distributed. This property permits simpler derivations, although no tighter 
resul ts ,  than in  the general case. It a lso permits us  to  dispense with the composition 
argument, and thus the H(L) te rm,  in which case  continuous sources may be treated no 
differently from discrete ones. 

2.4 SOME EXAMPLES 

We shall examine two special cases  of sources and distortion measures  which have 
some interesting features. It is hoped that the repeating of the coding theorem proofs 
for these cases w i l l  not be too repetitious, but will add insight into the general  problems, 
as well as point out spots where special properties allow us to obtain simpler bounds 
than those discussed above. 

F i r s t ,  consider encoding an equiprobable binary source with Hamming distance as 
the distortion measure. This means that the distortion matrix is 

and the distortion between two blocks of length n is just l /n t imes the number of posi- 
tions in  which they differ. A s  in section 2.2, we consider an encoder that has an arbi-  
t ra r i ly  long l i s t  of code words y. which it compares in a preset order  with 2, the source 
output sequence, until a y.  is found for which d(x, yj) S nD. Note that D does not depend 

-J 
- -  --J 
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on x in this special  case. The encoder puts out an integer to specify which code word 
f i r s t  satisfactorily matches 5, and f rom the results i n  Appendix A we know that we  may 
consider t'ne r a t e  to be H(f0 ,  the entropy of this integer distribution. Of course,  the 
average distortion must be less  than D. 

As usual, we consider the y .  to have each letter chosen randomly and independently 
-1 

of all other le t te rs  with equal probability of being a one or a zero  and, just as in sec-  
tion 2 .2 ,  we can a s se r t  that there  exists a set of code words for which 

where 

q = Pr[d(x,y) S n D], -- 

and is independent of 5, because of the symmetries of the distortion measure and the 
distribution from which the code words a r e  chosen. It is shown in Appendix C that 

and to further upper-bound this quantity, we must lower- bound q. Since d(x, y) is the 
sum of independent equiprobable binary random variables,  

-- 

W e  now use a bound developed by Shannon for this type of problem, which is 

The derivation of this bound from Stirling's approximation to the factorials in the bino- 
mial coefficient may be found in Peterson.25 From this resul t ,  we have 

Since the r a t e  per source output satisfies n R = H(K), 

n R S -log q t 1 

logz e t -log 1 n t F l o g  1 2 a  D( 1-D), 2 l 2  nD 12 n(1-D) 
S n( 1-H(D)) t(L t ( 9 )  



which, upon dividing through by n, becomes 

2 c3 R 1 - H(D) t t - t 2 .  
" n  

c1  log n c 

The 1-H(D)part of expression (9)  can easily ,e shown directly to be R(D) for the .nary 
source and Hamming distance distortion measure. W e  shall defer this to section 3. 3 ,  

where w e  develop more general machinery from which this result  follows as a special 
case.  Thus the coding theorem is proved for this case,  and the ra te  of approach is seen 

log n 
to be - , as expected. Finally, we  merely note that in Appendix A it is shown that n 
encoding the integers into a variable length code only adds a 1/n t e r m  to the bound on 

R,  so  that the 7 t e r m  continues to be the dominant one. 

as outputs points on a circle). The probability density that we shall consider is one that 
is uniform over the entire circle,  and the distortion measure wi l l  be assumed to be a 
function only of the angle (<180") between the two points. This is the modular analog of 
a difference distortion measure. 

log n 

Our second example is a continuous, t'modulartt source (that is, one that produces 

A s  usual, we encode by selecting an  arbi t rar i ly  long l ist  of code words and search  
this list until a good one is found. The integer k is put out by the encoder i f  yk is the 
f i r s t  code word on the l ist  satisfying d(x,yk) - _  G nD. A s  before, we calculate for each 5 
the entropy of this integer output when the code words a r e  chosen randomly, with the 
standard argument that there must be a set  of code words giving an entropy, at  most, 
as large as this expectation. 

- 

We choose each letter of each code word independently f rom a distribution that is 

uniform around the circle,  and so  for a given x, it  is clear  that the k distribution is 
geometric, with 

where 

Now because of our assumptions about the distortion measure,  

where xi - yi should be read as the angle between these two points. But yi is uniformly 
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' distributed, and therefore xi-yi is also,  independently of xi. Thus d(x,y) -_  is a sum of iden- 
tically distributed random variables, d(ui), where the ui a r e  uniformly distributed, and 
a r e  independent of x. Thus qx= q,  independent of 5. The argument that the r a t e  satisfies - 

n R C -log q t 1 

then goes through exactly as before, with the minor difference that one single q is good 
for all 2, and thus the composition argument that is necessary in the general  case can 
be dispensed with. 

Still following the usual procedure, we seek a lower bound to q,  but now, by virtue of 
the fact that the d ' s  are identically distributed, a slightly different bound is possible, 
We rewri te  

where we have treated the di = d(ui) as random variables with their  own distributions, 
and use the lower bound given by Gallager,26 which gives 

1 - o(n) 
exp[t4 s )-Sl*' ( s  11 , 

where s is determined from 

p'(s) = n D 

and 

= n log E(eS d}, 

where d is a random variable with the same distribution as the di. It is simple to show 
that 

by showing that the optimum test  channel must have a uniform output and using the pro- 
cedure of section 2.2. Thus 

n R S -log q t 1 

1 = n R(D) tT log  (2n n s2 plt(s)) t 1, 

log n 
and dividing through by n shows that the convergence is again 7. 

Note again that the list-encoding argument works for this continuous source because 
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the entropy of the integer output did not depend on - x, which allows US to dispense with' 
the composition argument. 

2.5 CAPABILITIES O F  BLOCK CODES 

In section 2 .2 ,  we discussed conditions under which block coders could approach 
R(D) for all values of D. Now we  shall investigate this c lass  of encoders in grea te r  
detail, and it wi l l  be seen that, even when they are not capable of achieving the perfor- 
mance guaranteed by the coding theorem for all D, often there  is s t i l l  a range of D for 
which they are  optimal. In order to get at  this resul t  and to find this range of distor- 
tions (or  equivalently, a range of ra tes ) ,  we f i r s t  investigate the encoding by means of 
block codes of discrete sources with a distortion measure whose values a r e  either zero  
or  infinity, W e  derive an expression for the smallest  number of code words necessary 
to give zero distortion, and knowledge of this minimum block-code ra te  for such a dis- 
tortion measure w i l l  then allow us to solve several  related problems involving block 
codes. For example, not only can we specify the range of r a t e s  for which such codes 
can approach the Rate-Distortion function in performance but a lso we can calculate the 
ra te  of a discrete source relative to a fidelity cri terion that requires  every letter to be 
encoded with distortion no more than a specified amount, ra ther  than merely achieving 
this performance on the average. 

The criterion on average distortion with letter distortions either zero or infinite is 
equivalent to requiring that for every possible source sequence there  be a code word 
whose distortion with this sequence is zero. Thus, for each source letter x, there  is a 
set  of "allowable" output le t ters ,  and one of these must be used to adequately represent  
x. These sets can be represented simply by an  adjacency diagram like those shown in 
Fig. 7, which have the interpretation that any output letter that is connected by a line to 
an input letter may be used to represent that input letter. In both of these examples, the 

1 1 

2 2 

3 3 

A 6 

Fig. 7. Typical adjacency diagrams. 

input and output a r e  3-letter alphabets, but in A only the corresponding letter may be 
used to represent a source output, while in B the first source le t ter  may be coded into 
(represented by) either of the f i r s t  two output le t ters ,  etc. 
easy to see that we  need one code word for  each possible source sequence, and so  we 
need 3" words to insure that blocks of n wi l l  be adequately represented. In the second 

For the f i r s t  case,  it is 
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case ,  however, the set  (1,2) is a satisfactory set  of code words for n = 1, and (1 1, 22, 
33) is such a set for  n = 2. We shall see  that the r a t e  of this second code, R = F l o g  3,  

is the smallest that any satisfactory code may have. 

1 

Let us now turn to the formal  development of our results,  and for a block length of n, 
define M a s  the smallest number of code words that insures that every source 
sequence can be represented by at least one code word. Then we  define the ra te ,  Ro, by 

0 ,  n 

A i  Ro = inf -log Mo, n. 
n n  

Clearly, Ro 2 R( 0), the rate-distortion function for the given source and distortion mea- 
su re  evaluated at  D = 0, since this last  function gives the smallest  possible r a t e  of any 
coding scheme, which includes block codes a s  a subset. Furthermore,  if  we require  all 

of the source-letter probabilities to be nonzero, which merely states that all le t te rs  are 

really there,  then it is easy to  see  that Mo is independent of these probabilities. This , n  
is t rue  because the probability of each source sequence wi l l  then be nonzero, and s o  
must have a representative code word. Thus the inequality Ro 3 R(0)  must hold for all 
source distributions, and s o  we  can write 

Ro 2 sup R(O), 
P - 

where p is the source probability vector, and the sup is over the open set  described by 
the conditions p > 0 for all i ,  and pi = 1. Now since I(X;Y) is a continuous function 
of the probability distributions, so is R(D), and, therefore,  we can include the boundary 
of the region and write 

- 
i 1 

Ro 2 Max R(O), 
P - 

where now the Max is over the set  pi 2 0 and Zpi  = 1. 
relation for R(O), we have 

Finally, inserting the defining 
i 

R o 2  Max Min I(X;Y), 
- P p( j l i )  

where the transition probabilities p(j I i) of the tes t  channel are restr ic ted to be nonzero 
only for those transitions that result in zero  distortion (that i s ,  values of i and j for 
which the distortion between i and j is zero).  

We shall  now show that the inequality of Eq. 10 is actually an equality by demon- 

strating the existence of satisfactory codes with r a t e s  arbi t rar i ly  close to the right- 
hand side. Since the extrema of functions over closed se t s  a r e  always attained for 
some member of the set ,  there must exist p and p ( j l i )  such that the mutual informa- 
tion that they determine is the desired Max Min. Since I(X;Y) is a differentiable function 

of the probability distributions, it  must be stationary with respect to variations in  the, 

* ;o: 
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p(j 1 i) distribution a t  the saddle point. If this were not so,  then this point could not be a 

minimum. Furthermore,  since I(X;Y) is convex n in - p and convex U in the p( j  I i) distri-  
15 bution, the order of the Max and Min can be interchanged without affecting the result .  

Then by the same reasoning that w a s  used above, I(X;Y) must a lso be stationary with 
respect to variations in the nonzero p. when pi = pi. 

tributions sum to one, we can write 

* 
1 

Thus, including Lagrange multipliers to satisfy the constraints that probability dis- 

and 

* * 
for all i and j such that pi and p ( j  I i) a r e  nonzero. Since we know 

p(j  I i) 
-- a 1  - pi log- 
ap(j  I i) ql 

and 

where q = Cpi p( j l i ) ,  then Eq. 11 becomes 
j i  

or  

p(j I i) 
‘j 

i’ log- = r 

p(j  I i) 

q j  
which is independent of j. Then by substituting ri for log - , Eq. 1 2  becomes 

and by taking ri outside the summation, 
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ri = 1 - p, 

and thus is independent of i also. 
butions, it must be t rue that 

Therefore for maximizing the minimizing distri-  

a constant, for all i and j such that pi p ( j l i )  > 0. It then follows that 

1 I(X;Y) = log ?;, 

and if  we define the se t s  Si = {jldij = 0}, we can write 

(all i such that pi > 0), 

j €Si j €Si 

since p(j 1 i) must be zero for j $Si. 

expression similar to Eq. 12 must hold, namely 

For those source le t ters  whose maximizing probabilities tu rn  out to be zero,  an 

for all i such that pi = 0. By taking the derivative, this becomes 

or 

(14) 
1 - p = log%. 

Since the p( j  I i) do not affect 
choices of the p(j  I i) values, 
must hold when 

I(X;Y) when pi is zero, this inequality must be true for all  
as long a s  these are zero for j IS.. So, in particular, it 

1 

1 0  otherwise 
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where u is a normalizing constant equal to 
becomes 

Z qj, But with this choice of p ( j ) i ) ,  Eq. 14 
j €Si 

1 1 log - 5 log T; 
U 

or 

u =  1 q j 2 h .  

j E Si 

Now consider constructing a code by picking each letter of each code word randomly 
and independently with probability distribution q .. With this method, the probability that 

3 
a randomly selected letter wi l l  be an acceptable representation of the ith source letter 
is just q . ,  which has been shown to be greater  than or equal to h, independent of i. 

Thus the probability that a randomly chosen code word y of block length n wi l l  be 

Z 
j €Si J 

- 
acceptable for a given source sequence x is 

for all x. 
If M = enR code words a r e  so chosen, then the code r a t e  is R,  and the probability 

(averaged over all codes) that a given sequence is not covered is 

n M  Pr[no word for  2 1x1 S (1-h ) 

-Mhn S e  

n(R -log T; 
-e = e  

1 Now setting R = l o g x  t 6, where 6 is an  arbitri ly small  positive number, we can bound 
the probability of all x sequences  for which there  is no code word by 

Pr[x_lS no code word for IC] = )1’ p(&) Pr[no word for ~ I X ]  

n6 -e S e  

By the usual random-coding 
mance at  least as good as 
that 

argument, there  must exist a code with perfor- 
this average, and we  can choose n large enough 
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-e n6 n 
< Pmin' e 

where p min 
is a code for which 

is the smallest  source-letter probability. Thus for  large enough n, there  

n6 
Pr[xI - 3 no code word for - x] G e-e < (Pmin )" ' 

But this probability must then be zero,  since the smallest  nonzero value that it could 
take on is pmin. 

Thus we  have shown that for code r a t e s  arbitrari ly close t o  log-= Max Min I(X;Y), 
there exist codes that wi l l  give zero distortion when used with the given source. Since 
it w a s  shown ear l ier  that such performance was not possible for  ra tes  below this value, 
we have established the block-coding rate  of a discrete source with letter distortions 
that are either zero  or infinite to be 

n 
1 
h 

Ro = Max Min I(X;Y). 

p( j l i )  

Furthermore,  the conditions on stationarity of I given by Eqs. 11, 12, and 13 a r e  
sufficient as well as necessary. Thus we know that i f  we  can find distributions satis-  

p(j I i) 
fying the condition that for some number h,-= h-' for all i and j such that pip(jli)>O, 

q i  
then the I(X;Y) determined by these distributions is the desired Roe We have seen 

that this condition is equivalent to having all transitions leading to a given output letter 
have the same probability, and that for each source letter with positive probability, the 
sum of the probabilities of these output letters that can be reached from this input be 
the same. 

It is interesting to compare these resul ts  with those of Shannon on the zero-er ror  
capacity of a noise channel. 
There a r e ,  however, cases  for which the zero-error  capacity is not known, unlike the 
zero-distortion rate .  

0' 
His upper bound on this capacity is identical with our R 

As an example Qf the calculation of Ro, consider the distortion shown in Fig. 7b. It 
is easy to see that a source whose letter probabilities are all 1/3 ,  and a channel whose 
transition probabilities are 1/2  everywhere that there  is a line in  the diagram, and zero  
elsewhere, satisfy the conditions of stationarity given above. Thus Ro is I(X;Y) for this 

1 source and channel, which comes out to be F log  3. 
The techniques just developed allow u s  to solve several  other problems concerning 

block codes for discrete sources.  If we want to know the r a t e  needed for zero-average 

distortion for  an a rb i t ra ry  distortion matrix,  it is easy to see that this r a t e  is just Ro 
for a distortion that is zero  everywhere that the given one is, and infinite elsewhere. A 
second problem is finding the block-code ra te  necessary for achieving a finite-average 
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distortion when some of the d.. a r e  infinite. In this case,  the answer is Ro for the dis: 
tortion that is  infinite everywhere that the given one is, and is zero elsewhere. We shall  
refer  to this distortion as the modified distortion measure. This result  allows us to 
specify when block coders approach R(D), as advertised in section 2.2, as follows: 

Theorem 5: Block encoders exist with r a t e  and distortion approaching R(D) if and 
only i f  R(D) is greater than the smallest block-code ra te  that can yield a finite-average 
distortion for  the given source and distortion measure (which ra te  has been shown to be 
equal to  Ro for the source and modified distortion described above). 

Proof:  Firs t ,  the "only i f t t  part of the theorem must hold because otherwise there  
would be block codes with ra tes  less  than Ro, giving zero distortion for the given source 
and modified distortion measure. Conversely, suppose R(D) > Ro, so  that we can pick 
a number Rb such that R(D) > Rb > Ro. Then for sufficiently large n, there  exist block 

codes of rate Rb(having enRb code words) with finite distortion (say Dm). Then to encode 
the source,  w e  pick a block code of ra te  R > R(D), which therefore has enR* code words, 

and add the enRb code words to  this set. If R > Rb, this addition has a negligible effect 
on the ra te  for large n. The distortion of this code can then be bounded by 

13 

* 
* 

D S D* + POD,, 

* 
which can be made arbi t rar i ly  close to D for large enough block length n. Q.E.D. 
Another statement of this theorem is that Rb(D) = R(D) if and only i f  R(D) 2 Ro. 

Finally, the fidelity cri terion might be that every letter be encoded with a distortion 
no greater  than D (as opposed to the more usual constraint on the average over a block, 
which we have been considering up to this point). In this case,  the "every le t ter"  block- 
coding rate Rep(D) is just Ro for the distortion that is zero if  the original dij is D o r  
less ,  and infinite otherwise. 

2.6 SOME EXTENSIONS OF THE THEORY 

We shall consider two extensions of the basic theory developed in section 2.2. In the 
f i rs t  of these, we suppose that the outputs of the source a r e  corrupted by being passed 
through some noisy memoryless channel (without coding) before the encoder is permit- 
ted to  look at them. We a r e  still interested in 

the distortion between the x's and the y 's  and, a s  before, we ask for the relation between 
this distortion and the necessary r a t e  of the encoder. This problem may be termed the 
tlNoisy Source" problem, and we shall  denote the analog of the rate-distortion function 
for this case by Rn(D). 

alent one involving ordinary (noisefree) source coding. We assume that we a r e  given 

the probability distribution of the source,  p(x), and also the transition probabilities of 
the channel, p(w I x). We further assume that a distortion measure d(x, y) between x and 

The configuration is shown in Fig. 8a. 

This Itnoisy source rate"  may be found by reducing the problem as stated to an equiv- 
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h 

' y  is specified. W e  define another distortion function, d(w,y),  between w and y by 

SOURCE 

where p(x I w) is the conditional distribution given by 

Y - ~ ENCODER- W * 
REPRODUCER 

If these se t s  a r e  discrete,  merely replace integrals by sums. 

output distribution 

b 
Now let R(D) be the ordinary rate-distortion function corresponding to a source with 

h h 
and distortion measure d(w,y). We claim that Rn(D) = R(D). To prove this fact, it  suf- 

fices to show that all encoders satisfying one of the fidelity cr i ter ia  must satisfy the 
other. For any encoder with w and y as input and output alphabets, respectively, there  
a r e  defined distortions E(d(x, y)) and E{d(w, y)} when connection is made as in par t s  (a) 
and (b), respectively, of Fig. 8. Now we can write 

)r 

W ENCODER - 
5 CHANNEL 

X 
SOURCE 

REPRODUCER 
D ( X )  

Fig. 8. (a) "Noisy Source" configuration. 
(b) Noiseless analog. 
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But p(xlw,y) = p(xIw), since the configuration is cascade, s o  

Thus the average distortions that any particular encoder gives r i s e  to in each of the two 
cases  of Fig. 8 a r e  identical. Therefore, the c lass  of all encoders that satisfy the fidel- 
ity criterion 

in case  (a), is identical with the class  that satisfies the cr i ter ion 

in case (b). Since the encoder ra te  obviously does not depend on which configuration the 
encoder is  in, the result  is that 

Rn(D) = R(D). 

To conclude this discussion of the noisy source problem, we can give two examples 
of calculation of Rn(D), using the result  derived above. F i r s t ,  consider the binary sym- 
metric source and 
channel crossover 

- that is, d . .=  
1J 

channel of Fig. 9, where the source le t ters  a r e  equiprobable, the 
probability is E ,  and the distortion measure is Hamming distance, 
Then the d matrix can be found by using Eq. 15, and turns out to  be 
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1 - e  

I - 1  1 - E  

Fig. 9. Binary source corrupted by a BSC. 

since p(xIw) = p(wlx) in this case. The p(w) distribution is, of course,  the same as p(x), 
since the channel is symmetric. Thus we need only find R(D) for an equiprobable binary 
source with {q as the distortion. We note that R(D) = 1 - H(D) when the distortion is d. .  = 

1J 
1 - 6 . . ,  and 

1J 

A 

d..  = (l-ZE)(l-b..) t E ,  
13 1J 

and we recal l  that, by Theorem 1, i f  

d l  = ad2 f p, 

then 

where R1 and R2 correspond to the distortion measures dl  and d2, respectively. 
se t  a = 1 - 26 and p = E ,  i t  follows that 

If we 

the smallest  possible distor- mint which, we  note, behaves as we would expect, with D 

tion equal to  E ,  and Dmax = 1/2. 

additive Gaussian noise with variance ri (see Fig. 10). 
The second example is a zero-mean Gaussian source of variance r:, corrupted by 

The distortion measure is 

X 
SOURCE -- w 

2 Q 
X 

Fig. 10. Source corrupted by additive Gaussian noise. 

2 taken to be mean-square e r r o r ,  d(x, y)  = (x-y) . Clearly, p(w) is Gaussian with 
variance rw = rx + crZ, and 2 2 2  
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is Gaussian with mean Aw, where 

2 
X 

U 

2 
z x  

A =  
u t u  

2 and with variance A uz. Then we can calculate 

2 2 = A uz t A2w2 - 2y Aw t y 

2 2 = A uZ t (y-Aw) . 

Letting v = Aw, we see that we want R(D) for a zero-mean Gaussian source p(v) with 
variance 

and distortion 

Using the result  of Theorem 1 and the fact that for a Gaussian source with mean- 
2 

D 
1 0- squar: distortion, R(D) = log -, we have 

which, upon substitution for A, becomes 
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Again, we note that this form is what we expected, with the smallest  D being just the 
minimum variance estimate of x made on the basis of w, and the ra te  becoming infinite 
as this D is approached. Furthermore,  Dmax is just that D for which R = 0, or for  
which the argument of the log is 1. This turns out to be ux, a lso as expected. 

The second extension of the theory that w e  shall discuss comes about when the 
source outputs a r e  required to be encoded to simultaneously satisfy several  fidelity c r i -  
ter ia ,  ra ther  than just one. The user  specifies distortion measures dl(x, y) . . . dn(x, y), 
and tolerance levels D, . . . Dn, and insists that E{Di(x,y)) S Di for all i simultaneously. 

For  this case,  the rate-distortion function becomes a function of the n variable 
D1. . . Dn, and is defined by 

2 

R(Dl . . . Dn) = Min I(X;Y), 

{P(Y I XI1  

with the constraints 

The proof of the coding theorem for this case is so  s imilar  to the proof in the single- 
distortion case that we merely indicate the few places where the two differ, and leave 
the filling in  of the details as an exercise. 

The fact that no encoder can have ra te  below R(D,, . . . Dn) while st i l l  satisfying the 
fidelity c r i te r ia  is proved exactly as in  section 2.2. The positive-coding theorem par- 
allels the proof in Appendix B if  all of the distortions satisfy the condition on the single- 
distortion measure there, that there be an output letter guaranteeing finite distortion. 
The selection of code words and definitions of R and D1 . . . Dn a r e  exactly as for the 
ordinary case,  and Po is defined by 

* * * 

Po = 1 - Pr di(x, y(x)) S n (DT i-5) for  all i [ - - -  

so  that similarly,  the ith distortion satisfies 

* 
Di Di t $t  Po Dmax. 

The definition of the set  A must be modified to 

or...or d n - -  (x,y)>N(D:t$)), 

where N is now the block length of the encoder. Then the same argument as that in 

Appendix B ca r r i e s  through for the r e s t  of the proof. 
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111. EVALUATION O F  R(D) 

We now turn to consideration of methods by which the rate-distortion function R(D) 
may be evaluated, a t  least for  some interesting special cases.  
knowing this function has already been discussed in Section I, and thus needs no addi- 
tional motivation. Unfortunately, like channel capacity, R(D) is not easily calculated 
in general; direct attacks using the definition as a Min I(X;Y) can be made, but they 
cannot be carried through to a general closed form answer. Various researchers  have 
obtained sets of linear equations to be solved for  the transition probabilities of the tes t  
channel, ” 3’  

guaranteed to produce non-negative probabilities severely limits the usefulness of such 
results. Indeed, the R(D) function has been found explicitly only for a very few special 
cases:  Shannon solved the case of a uniform discrete source and a distortion matrix 
with the same set  of entries in each row and column, and the case of a t ime-discrete 
Gaussian source with mean-square distortion; Kolmogorov,‘ Jordan, and Holsinger all 
independently extended the last  solution to time-continuous Gaussian sources. This is 
the only known result for the time-continuous case. 

The desirability of 

but the fact that the general solution is unwieldly and cannot even be 

2 

Since the task of finding R(D) exactly is so difficult, we a r e  led to investigate means 
of approximating it. We shall give ways of estimating the ra te  of a source relative to a 
class  of distortion measure called difference distortion measures,  In the continuous 
case,  a difference distortion measure is one that is a function only of the magnitude of 
the difference between input and reproduction, d(x, y) = d( I x-y 1 ). A common example 

2 is mean-square e r ro r ,  where d(x,y) = (x-y) . For discrete sources the condition is 
that the distortion matrix have the same set  of entries,  although permuted, perhaps, in  
each row and column. 

Most of the results given here wi l l  s tem from a lower bound to  R(D) for continuous 
We shall sources and difference distortion measures which was  developed by Shannon. 

extend this result to include discrete sources,  and give a means of calculating the 
bound in both cases.  Then this bound wi l l  be related to R(D) by deriving necessary and 
sufficient conditions under which equality holds, and we  shall show that even when R(D) 
is not identically equal to the lower bound, it st i l l  provides a good approximation at 
small  distortion levels. Finally, R(D) for the case of a discrete source and distortion 
dij = 1 - 6 . .  w i l l  be calculated for all D. 

3.1 LOWER BOUND ON R(D) 

11 

In his 1959 paper, Shannon derived a lower bound to R(D) for a continuous source 
with a difference distortion measure,  which has the form 

R(D) 2 H(X) - W)), (16) 

where H(X) is the (continuous) entropy of the source distribution p(x), and +(D) is 
defined by 
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where p(z) is any probability density, and the maximization is subject to the constraint 

Ez{d(z)) 2 1 d(z) p(z) dz C D. 

Note that d can be written as a function of one argument only because it has been 
assumed to be a difference distortion. At this point, let us state the convention that 
when the l imits  of integration a r e  unspecified, they a r e  -03 and 03. 

Now suppose that we have found the test  channel for the given source, distortion, and 
distortion level, so  that 

R(D) = I(X;Y) 

= H(X) - H(X1Y) 

Denoting the expected distortion between the random variable x and the point in the out- 
put space y by D we  can write 

Yf  

H(X I y) Q(Dy), 

by the definition of Q as the maximum of all such entropies. Therefore 

Now Q(D) is convex n as a function of i t s  argument, which can be seen as follows: 
Suppose p,(z) and p2(z) a r e  the maximizing distributions that give Q(D) and Q(DZ), 
respectively. Then 

so 
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As a result  of this convexity, 

where the bar denotes expectation with respect to the p(y) distribution; that is, 

Thus it follows that 

R(D) 2 H(X) - +(D). 

Up to  this point, the derivation has followed Shannom2 Hereafter, the resul ts  pre-  
sented a r e  original. A few of these have appeared elsewhere, l 9  and are repeated here  
for convenience. 

The function +(D) can be easily calculated by using calculus of variations techniques. 

Introducing Lagrange multipliers s and t to allow for the constraints 

1 p(z) d(z) dz = D 

and 

r e  spec t ively , we have 

= Min 1 p(z) [logp(z)-sd(z)-t] dz. 
P(Z) 

The condition on the extrema1 p(z) is that the derivative of the integrand with respect to 
p be zero, or  

log P(Z) - s d(z) - t + 1 = 0. 

The solution to this equation is 

sd(z) p(z) = C e 

where t h a s  been absorbed into the constant C, which is adjusted so  that p(z) integrates 
to 1. It is convenient to define a function 
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so that 

and the parameter s is s t i l l  to be determined from the constraint 

s p(z) d(z) dz = D 

o r  

s d(z) esd(z) dz = D A(s).  

The expression for +(D) then becomes 

with s sti l l  determined by Eq. 19. +(D) can be calculated for some special ca ses  by 
finding A(s)  from Eq. 18, solving Eq. 19 for s ,  and plugging the result  in Eq. 20. 

general, however, it is convenient to express 4 and D parametrically in s. From Eq. 19, 
it can be seen  that 

In 

and substituting this in Eq. 20 yields 

Clearly, A(s)  and A ' ( s )  are well-behaved for s < 0, as long as d(z) increases  
fas te r  than logarithmically, but not faster than exponentially in I zI . The range s 2, 0 

is not of interest  to  us ,  since as s - 0, D - 00, and as s - -00, D -. Min d(z), 
which is usually assumed to be zero and to occur a t  z = 0. 

Z 

Clearly, D is continuous in s, and can be seen to be monotone increasing in this 
parameter by 
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2 = 1 (d(z)-D) p(z) d z > 0. 

Similarly, + is monotone increasing in s ,  since 

which is positive for s < 0, the range of interest. It is perhaps interesting to note that 
the parameter s is the slope of the lower-bound curve, since 

This derivation has applied only to  continuous sources,  but the discrete case  can be 
treated in an almost identical manner. Here, the analog of a difference distortion mea- 
su re  is a matrix containing the same set  of entries in each row and column. A lower 
bound on R(D) that is analogous to  the one presented above for the continuous case can 
easily be derived for this case. If the source and reproduction alphabets each have M 
let ters ,  we define 

+(D) = Max H(Z),  
Z - 

where z is an  M-component probability vector, and the Max is taken subject to the con- 
straint  Z zi di = D, where idi) is the set  of column entr ies  of the distortion matrix. By 
proceeding exactly a s  in the continuous case,  it is easy to show that 

for  all channels such that E(d.  .) S D, and therefore,  in particular,  this relation must 
hold for  the channel of this class with the smallest  mutual information, which is R(D). 

1.l 

The function +(D) can also be calculated exactly as before, with the result  

A ' b )  + = log A(s) -S - 
A(s )  
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. 
where now 

and again we a r e  only concerned with negative values of s. 
At this point, it should be pointed out that the assumption of a difference distortion 

(which t e rm includes both discrete and continuous cases)  was slightly stronger than we 
needed to derive these lower bounds. All that was real ly  needed was that, for every 
output le t ter ,  the set  of possible distortions between it and the source be the same, 
which is equivalent to merely requiring each column of the distortion matrix to have the 
same set  of elements, ra ther  than to place such a requirement on both rows and columns. 
Non-difference distortions satisfying this condition a r e  ra ther  art if icial  and uninteresting, 
and so  in the interest  of ease of presentation the difference between the classes  of differ- 
ence distortions and those for which the lower bound applies has not been stressed. 

We shall  conclude with some examples of lower bounds of the type derived above. 
For the case  of a zero-mean Gaussian source with variance r2, and distortion measure 
d(x, y) = (x-y)', we calculate 

u3 2 s z  A ( s )  = e d z  

2 
Z 

-1/2 = H ( - S )  

so 

fi -3/2 A'(s) = - (-S) 
2 

and 

Then 

+ = log A(s) - s D 

1 1 1 
= -1ogr  2 --log 2 ('S) -k7 

1 = 7 l o g  (7). 
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Substituting for s in t e rms  of D, we  have 

1 2 and since the entropy of a Gaussian distribution of variance IJ' is known to b e F l o g  (2treu ), 
the lower bound is 

= - l o g E .  1 U 

2 

A second example is a binary source with distortion d . .  = 1 - h i j ,  or 
13 

Here, 

and 

A'(s) = e'. 

Therefor e 

which implies 

e s  = D 
1 - D '  

Then 

4 = log ( l t e s )  - s D 

= log (1 t &) - D log- D 
1 - D  

which becomes 

+ = H(D). 

Theref or e 
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which is valid for any probability assignment on the two source letters.  
that both of these lower bounds a r e ,  in fact ,  equal to R(D). 

We shall s ee  

3 . 2  RELATION OF THE LOWER BOUND TO R(D) 

W e  shall  now show that the lower bound to R(D) just presented is more 
than just a lower bound. In fact, it  is intimately related to R(D). W e  shall 
show that, in general, for continuous sources, R(D) - H(X) - +(D) as D - 0, 

thereby making this bound a useful tool for approximating R(D) for small  D. Fur- 
thermore,  under certain conditions, these two functions are actually identical. For  
discrete sources,  s imilar  resu l t s  hold, except that instead of merely approaching 
R(D), as D - 0, there is always a nonzero region of D for  which equality 

holds. 
The conditions under which R(D) is actually equal to H(X) - +(D) are stated 

in the following theorem. 
e sd(z) 

Theorem 6: Let p(z)=  - , where d( ) is the difference distortion measure 
A ( s )  

and the parameter s is related to the allowable distortion level D by 

Thus H(Z) = +(D) for this distortion measure. Furthermore,  suppose there exists a 
probability density p(y) such that p(y) convolved with p(z) yields p(x), the source 
density. Then under these conditions R(D) H(X) - +(D), where +(D) is defined by 
Eq. 17. 

Fig. 1 1. ItBackwardt' additive noise channel. 

Proof: We note that this condition implies the existence of a "backward additive noise 
channel" as shown in Fig. 11, where x = y t z, with y and z independent. The average 
distortion for  this channel is 
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= D, 

and the mutual information is 

I(X;Y) = H(X) - H(X I Y) 

= H(X) - H(Z). 

Because of our choice of p(z), we then have 

I(X;Y) = H(X) - +(D). 

Since we have demonstrated a channel with ra te  and distortion equal to  the lower 
bound, it follows that this bound must be identical with R(D). 

This procedure is important because almost all of the known R(D) functions are 
found by this method, For example, if  p(x) is Gaussian with zero mean and variance 
u , and d(u) = u2, then for distortion level D, it can be seen that p(z) is Gaussian with 
variance D, and as long as D 6 uf, we can choose p(y) to be Gaussian with variance 

the rate-distortion function for a Gaussian source u2 - D. Thus for D < ux = Dmax, 
with mean-square e r r o r  as the distortion is 

2 

2 
X 

2 
l a  X = log D 

by Eq. 22. This result  
source with 

and distortion 

w a s  f i rs t  derived by Shannon. It can be shown similarly,  for a 
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D 

2D 
e p(z) =- 

and 

2 2  2 2 c -clyl p(y) = c D 6(y) t (1-D c ) y e  

satisfy the condition p(x) = p(y)*p(z),  and since +(D) = log 2eD, then 

Finally, one last  c lass  of source-distortion measure pairs  for which R(D) = H(X) - +(D) 
is a modular source (which w a s  defined in section 2.4) with a uniform probability dis t r i -  
bution, and any difference distortion measure. We simply select p(y) to be uniform, and 
note that anything convolved with a uniform distribution on a circle  st i l l  yields a uniform 
distribution. 

In general, even if the source does not satisfy the conditions for equality given in  
Theorem 3 ,  the lower bound is sti l l  important because for quite general  continuous 
sources and difference distortion measure (see Pinkston' for precise conditions on 
p(x) and d(x,y)),  it  is t rue that 

l im (R(D)-H(X)t+(D)) = 0. 
D-0 

This fact is proved by finding an upper bound to R(D) and showing that if  d( ) is bounded 
away f rom ze ro  except in a neighborhood of the origin, then this upper bound approaches 

Fig. 12. Additive noise channel. 

Z 

the lower bound. To see this, consider the additive noise channel of Fig. 12 ,  where 

e sd(z) 
P(Z) = - 

A b )  

and 

A ' b )  

A b )  
-- - Di 

which is already familiar. Clearly, for  this channel 
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Since the channel's distortion is D, by definition, R(D) must be no greater  than i t s  
mutual information, so 

R(D) 6 I(X;Y) = H(Y) - H(Y IX) 

= H(Y) - H(Z) 

= H(Y) - +(D). 

But now the difference between the upper and lower bounds is just H(Y) - H(X), and as 

D - 0, it can be shown that s - -m, so  tnat p(z) = - approaches an impulse, since 
we  assumed that d(0) was the unique minimum value of d(z). Thus the convolution of 
p(z) with p(x) approaches an identity transformation, so  that p(y) - p(x), and H(Y) - H(X). 
Although none of these s teps  is difficult to show, we shall omit the proofs because they 

19 a r e  tedious and have already been written up elsewhere. 
Thus we have established that R(D) -L H(X) - +(D) as D - 0, and so  the la t ter  func- 

e sd(z) 
A(s) 

tion provides a good approximation to R(D) for small  values of D. 
For discrete sources,  the condition for equality of R(D) with the lower bound can 

be phrased, analogously to  the continuous case,  that there  must exist a p(y) such that 
p(x) is the output distribution of an  algebraically additive channel with input p(y). But 
this statement is not nearly as graphic as i t s  continuous analog, and for our purposes, 
it  is simpler t o  make the condition as follows: 

Theorem 7: Suppose there exists a channel for which p(x) is the input distribution, 
and 

.sd(x, Y) 
P(XIY) = 

A(s) 

Then R(D) = H(X) - +(D). 
The proof is so s imilar  to  that of Theorem 6 that it  will be left as an exercise. 

It is clear that such a channel wi l l  exist if there is an output distribution q(y) such 
that 

Since we  a re  dealing with discrete variables, we shall find i t  convenient to write P(X) 
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- and q(y) as vectors p and q, respectively, each of dimension M. Similarly, we wi l l  
write d(x,y) as an M X M matrix, with entries d. . ,  i corresponding to the source let- 
t e r ,  and j to the output letter.  Then the condition for equality of R(D) with the lower 
bound is that the equation 

1J 

must have a solution q = f2-l p, with all elements of q non-negative, where 52 is an 

e 'J M X M matrix with ni j  = - 
- - sd. .- 

' 
If the distortion matrix has d. .  = 0 and d . .  > 0 i f  i # j, then approaches the identity 

1J 1J 
matrix as s - -03, and clearly q = p is a valid solution in this case. The condition s = -a 
has been shown (in section 3.1) to  correspond to minimum distortion, and so  we have 
R(D) equal to the lower bound at D = Dmin, which may be taken equal to zero with no loss  
of generality. Furthermore,  since the elements of f2 are continuous functions of s ,  the 

elements of the inverse will be likewise, and so q wi l l  vary continously with s. Thus 
there  must be a range of values of s, -x < s < s for which Eq. 2 3  has a valid solution. 
It then follows that there  is a D1 > 0 such that R(D) = H(X) - +(D) for all 0 S D S D1, and 

- -  

- 
1 

It is interesting to note that if  the distortion matrix satisfies the condition that all 

rows, as we l l  as all columns, have the same entries,  and if  the source le t ters  a r e  

I>' is always a solution, and R(D) is equal to  the equiprobable, then q = p = (a, , . . , M. 
lower bound for all D S Dmax. 
source dicussed ear l ier .  

1 
- -  

This situation is analogous to the uniform modular 

We have seen that the lower bound H(X) - +(D) is a powerful tool for obtaining infor- 
mation about the rate-distortion function when d(x, y) is a difference-distortion measure. 
In fact, virtually every R(D) function that is known exactly is equal to  this bound. 
only nontrivial exception to this statement known to the author is R(D) for a discrete 
source with Hamming distance as the distortion measure. We shall see  how this func- 
tion can be found for all D. 

The 

3.3 APPLICATION TO THE CONVERSE OF THE CODING THEOREM 

'i 

Suppose that our source is discrete,  and our distortion matrix is d.. = 1 - bij ,  where 
is the Kronecker delta. The average distortion is then just the probability that a 

source letter is not reproduced correctly. Knowing R(D) for this matrix and some source,  
we can find the minimum achievable probability of e r r o r  when transmitting this source 
over a channel of capacity C simply by solving R(D) = C for D, the desired minimum 
probability. Since R(0) = H(X) and R(D) is monotone decreasing, this minimum per  letter 

1J 

j 
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probability of e r r o r  wi l l  turn out to be strictly positive i f  C < H(X), which - 
establishes the coding theorem converse. The present derivation goes beyond 
this, and actually gives a method of finding this minimum e r r o r  probability, 
rather than merely showing it to  be positive. It wi l l  be convenient to consider 
the source probabilities ordered, so  that p1 S p2 C . . . S pM, which involves no loss  
of generality. 

We shall now find the lower bound to R(D) for this case and see  where equality 
holds. Firs t ,  

'.~- s di 
A(s )  = 1 e = 1 t (M-l)eS; 

therefor e , 

A ' @ )  (M-l)eS 

A ( s )  1 t (M-l)es' 
D=--  

Solving for s ,  we get 

D 

(M-l)( l -D) 
eS = 

so  that 

D 
A ( s )  = 

Now 

9 = log A(s) - SD 

where H2(D) = -D log D - (1-D) log (1-D). So the bound is 

Clearly,  if we set  the right-hand side of this inequality equal to C, the channel 
capacity, and solve for D, this wi l l  be a lower bound to the minimum possible 

20  probability of e r ro r .  This resul t  is identical with that obtained by Gallager. 

W e  now want to  find the region of equality. Writing 
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. 

Q 

Q 

Q 

Q 1 

S where Q = e , and Q < 1, since s < 0, we s e e  that the equations to be solved are 

The solution is 

[ l t ( M - l ) Q ]  pj  - Q 

- - 
1 ' Q  

Now Q is monotonic as a function of s, and therefore a lso of D, and Q - 0 as s - --oo 

and D - 0. It is clear  that for small enough a ,  all of the q .  a r e  positive, and as a 
increases ,  the f i rs t  one to go negative wi l l  be the one corresponding to p l ,  the smal-  
les t  p. We therefore solve the equation 

J 

for the Q below which all of the q ' s  are positive. This equation becomes 

p1 t Q(M-1) p1 - Q = 0 

or  

from which 

( M - ~ ) Q  

1 + ( M - ~ ) Q  
D1 = = (M-l)P1 

- is the value of D below which R(D)=  H(X)-  H2(D) - D log (M-1). Clearly, D1 ,< Dmax - 
M- 1 

Z Pmax i=l  1 -  = pi, with equality i f  and only i f  the M - 1 smallest  p. 1 a r e  equal. As  we  

53 



have seen, equality holds if all pi a r e  equal, and now we  can relax this condition to  only- 
the M -  1 smallest. For example, for p = 

R(D) = H(X) - H2(D) - D 

= 1.5 - H2(D) - D bits; 0 S D S T .  1 

In general, we  now have R(D) for  D S D1 = (M-l)pmin. Before we  proceed to  the 

task of finding R(D) for D > D1, let us  remark  that for a binary source,  our develop- 
ment indicates that D1 = Dma. Therefore 

R(D) = H(X) - H2(D) 

for all binary sources and the distortion dij = 
We now turn to  the calculation of R(D) for 

lemmas, and it is convenient to present them 

- % 
all D. For this task, we shall need two 
at  this time. 

Lemma 1: Suppose R(D) for some discrete source p and distortion matrix {d. .} is 
11 

known, and suppose we form the new distortion 

A 
d.. = d.. + w 
ij ij i 

(that is, every element of each row has a constant added to  it which may be different 
for different rows). Then 

R(D) = R(D-E), 
A 

A A 

where W = Z pi wi, and R corresponds to the source - p and the distortion d. 

Proof: This resul t  is a special case of Theorem 1. 
i 

Lemma 2: Suppose a distortion matrix has a row that is all zeros ,  and p1 is the 
probability of the source letter corresponding to that row. Then 

h 
where R( ) corresponds to  the distortion matrix with the row of zeros  deleted, and the 
source with letter 1 deleted, and probability vector 

Proof: An all-zero row means that w e  do not ca re  how that source letter is reproduced. 
Suppose x1 is this letter. Then we can choose p (jl 1) s o  that I(Xl;Y) = 0. With this 
choice. 

Y I X  
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* 

R(D) = Min I(X:Y) 

. 

pi I(xi;Y) 1 M 

i= 2 

M Pi 
= Min l(l-pl)  1 Fl I(xi;Y)l, 

i= 2 L 
and the constraint is 

E {dij) s D 
XY 

o r  

1 pi E {d..Ix=i) G D; 
i 

Y 1J 

but E { d.. I x= 1) = 0, so the constraint becomes 
Y 1J 

Now, by definition of R(D), the assertion follows. 
This lemma roughly s ta tes  that if a row is all zeros,  we need not expend any infor- 

mation on the transmission of the corresponding source letter. 
We are finally prepared to find R(D) for the distortion d.. = 1 - 6 . .  for all values of 

D. We simply note that the solutions for q .  of Eq. 24 a r e  monotonic in  (I, and therefore 
J 

in D. Thus once a q. goes to zero,  it never becomes positive for any la rger  D. Since 
p1 is the smallest  pi, q1 is the f i rs t  output probability to become 0, which occurs at  
D = D1 = (M-1) log pl. Then we know that for D > D1, output 1 will never be used, and 
we can, therefore,  remove it from the output alphabet and delete the corresponding col- 
umn from {d..) without affecting R(D). Thus for D > D1,  we might as well have the dis- 

13 
tortion matrix 

13 13 

J 

d.. = 
11 

. . .  

. . .  

... 
.. 

1 
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with M r o w s  and M - 1 columns, and the f i rs t  row is all 1’s. Now by Lemma 1, we can’ 

subtract 1 from the top row, and write 

where R ( l )  corresponds to the matrix 

0 . . .  0 

1 . . .  0 

1 . . .  1 

0 

1 

0 

. . .  1 0 

Now we have a matrix with an al l -zero row, so  by Lemma 2 

Combining these resul ts ,  we have 

where R(2) corresponds to the M - 1 X M - 1 matrix with dij = 1 - 6.  ., and the source 
11 

p(2) = (+, - * I *). 1 - PM 

(2) R (D) can now be lower-bounded exactly as before, and this lower bound is valid 
(M-2)Pz 

1 -P1  
for  values of the argument up to 

ability. Thus the second break point comes a t  D2, where 

, where p2 is the second smallest  source prob- 

So we  have 

R(D) = H(X) - H(D) - D log (M-1) for 0 < D S (M-l)pl 

and 
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for (M-l)pl < D S p1 t (M-2)p2, 

where 

It is clear  that this process can be continued a t  the expense of some algebraic com- 
plexity. The result  is 

where k runs from 

Dk = sk-1 + (M-k)Pk# 

and HM,k(X) is the entropy of the distribution (Pq, - 

function to get D as a function of R, one can find the minimum achievable symbol e r r o r  
probability a t  any signalling rate.  It is interesting to  note (and straightforward to verify 
directly) that the slope of this R(D) curve varies continuously over the entire range of D. 

A s  an  example, i f  - p =  (+,$,$), then D1 = 1/4 and D2 = Dmax = 1/2, and the ra te  

”). 1 -sk By inverting this 

(in bits) is 

1 O S D S -  4 (1.41 - H2(D) - D 

3 - 4  DISCUSSION 

We have presented a lower bound to R(D) for difference distortion measures,  which 

is due to Shannon, and have shown that under certain conditions, this bound is actually 
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an equality. Furthermore,  we  have shown that even when equality does not hold, the 
bound provides a good approximation to R(D) for small  values of D, since the two 
approach as  D-  0 for continuous sources,  and, in general, a r e  equal over some nonzero 
range of D for discrete ones. This shows that for small  D, the only parameter of the 
source that mat ters  is H(X), i t s  entropy, and this merely affects the vertical  placement 
of the R(D) curve. The shape of this curve is determined solely by the distortion mea- 
sure .  

- 'iij' This 
Using these resul ts ,  we were then able to find R(D) for all D, when d.. = 

1J 
function had to  be calculated in pieces, and the algebraic complexity that ensued perhaps 
gives some indication of the difficulties involved in the exact computation of R(D) curves. 
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IV. APPLICATION TO QUANTIZERS 

An obvious use for  the theory of source encoding that has  been developed in Section I1 
and I11 is t o  provide a yardstick f o r  evaluating an actual source coder. 
the best  possible performance is, the communications engineer can decide whether a 
proposed system comes sufficiently close to  the optimum, o r  whether there  is enough 
room for  improvement to justify the search fo r  better schemes. 
with such comparisons has  been the lack of knowledge of the R(D) function itself, and, 
to the author 's  knowledge, the only attempts i n  this direction have been made by Goblick 
and Holsinger5 and by G ~ b l i c k , ~  who restrict  themselves to  consideration only of 
Gaussian sources  with mean-square e r r o r  as the distortion measure.  

Knowing what 

The main difficulty 

With the machinery developed in Section I11 for  estimating R(D), w e  are finally in a 

position to evaluate some practical source-encoding schemes for  fairly broad classes 
of source distributions and difference distortion measures.  If one is faced with a con- 
tinuous source to be digitized, the first scheme that comes to mind is a simple quan- 
t izer.  
distortion that it introduces, on the average, between source  and user.  
if one is willing to use noiseless source coding techniques (cf. Fano ) to  encode the 
quantizer output without further distortion, then the other important parameter is the 
entropy of the output levels, since this determines the channel capacity needed to t rans-  
mit  the quantized values. Assuming that we are willing to do this coding, we shall  
investigate the relationship between achievable quantizer ra tes  (output entropy) and dis-  
tortion. 
input and output, f rom which it follows that R(D) is a lower bound on quantizer ra tes  for  
a distortion of D. 
Iulv ( v  >O), and small  values of D, this bound cannot be approached, but ra ther  it turns  
out that the lowest possible rate is some fixed amount above R(D) independent of D. This  
result  shows that as a class, quantizers a r e  suboptimal in a rate-distortion sense. 

Quantizers have been studied by many investigators, and for  a complete bibliography, 
the reader  is referred to Bruce.18 Most of this work, however, has  concentrated on 
the relationship between the distortion and the number of output levels, ra ther  than the 
entropy of these levels. A typical example is the paper by Max,21 which discusses the 
minimization of the mean-square e r r o r  of quantizers with a fixed number of levels. This  
comparison of distortion with the number of outputs is appropriate if the designer is con- 
cerned with the encoder complexity, but the output entropy is more appropriate if it is 
desired to t ransmit  the source as accurately as  possible over a fixed capacity channel. 

In evaluating such a device, an obvious quantity of interest  is the amount of 
Furthermore,  

31 

W e  shall show that this output entropy is also the mutual information between 

Furthermore,  for difference distortion measures  of the form d(u) = 

4.1 SUBOPTIMALITY O F  QUANTIZERS 

A quantizer is a memoryless device that takes a r e a l  number x as its input, and 
produces as output y(x), which takes on only a discrete number of values. The quantizer 
is determined by a number of adjacent intervals I1 . .  . In, with division points 
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6,. . . En,  such that 

I .  J = [ S j - l S  gj], 

and by representative points for  each interval q. E I 

x E I .  ( see  Fig. 13). 

Then y(x) = q. i f  and only i f  __ J j ' 3 

J 

Y ( X )  

/ X Fig. 13. Transfer  function of a quantizer. 
/ Ij 

/ 
/ 

It is interesting to  note that in the language of Section I1 a quantizer is a source encoder 
with a block length of one. Furthermore,  emphasis on the output entropy corresponds 
to considering the device as a variable-length encoder, while emphasis on the number 
of output levels corresponds to block encoding. 

The distortion introduced by such a device is 

where p(x) is the probability density function of the source,  and d(x,y) is the distortion 
measure.  Let u s  define q .  ( j  = 1, . . . n) to be the probability that y = q so that 

J j '  

The entropy of the output is then 

and since the mutual information I(X; Y) is equal to H(Y) (by virtue of the fact that 
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H(Y IX) = 0),  it follows that for  a quantizer with distortion D 

H(Y) 2 R P ) ,  

the ra te  distortion function for  the given source and distortion measure.  
We define Q(D) to  be the smallest  possible H(Y) of any quantizer giving distortion D 

o r  less.  Obviously, since Eq. 26 holds for  all quantizers, 

Q(D) 2 R(D)* 

We shall  now show that, fo r  small D, Q(D) is,  in fact, strictly greater  than R(D) when 
the distortion measure is 

To do this, we shall derive a lower bound to  H(Y) for  any quantizer with distortion D, 
which, since it is universally valid, must also then be a lower bound to  Q(D). Since 
H(Y) = I(X; Y) has  already been shown, we  can w r i t e  

H(Y) = H(X) - H(X1Y) 

j 

Let the length of the interval I .  be 2T., so that 
J J 

j ' 
H(Xly=qj) S log 2T 

At this  point, we assume temporarily that the source is strictly limited to a finite range 
of r e a l  numbers, so  that all of the T .  a r e  finite. Then 

J 

H(Y) 2 H(X) - 1 qj log qTj 

j 

(27) 
1 

2 H(X) 7 log 
j 

by the convexity of the log. The usefulness of the last two steps,  which may seem rather  
unmotivated now, wi l l  soon become clear. 
logarithm in Eq. 27 with the average distortion. 
w r i t e  

We now want to  relate the argument of the 
we To express D in t e r m s  of the T 

j*  
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where 

J 

can only Now if p(x) is convex u over I .  replacing it by its average value, - 
decrease the integral in Eq. 28, and then moving q. to the center of the interval resul ts  
in a further decrease. 

qj 

j 
2T ' J '  

J 
Symbolically, these steps a r e  

q.Tv 
J J  

u t  1 '  
-- - 

If the density p(x) is not convex u over I .  we can still obtain a bound on D by defining 
J '  j '  

P(X) 
4 Min 

Pmin, j XCI. 
J 

- 

so  that, from Eq. 28, 

2Tvt1 
J 

2- 
v t 1 Pmin,j* 

to  the center of I .  exactly as we  did in obtaining Eq. 29. Now define J 

j 
i f  p(x) is convex U over 1 

E .  = 

Pmin, j 

J 

otherwise 
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* which is just  the difference between the average and minimum values of p(x) over I. if 
3 

this density is not convex u there,  and w i l l  become small  as the quantization intervals 
become fine if p(x) is reasmable smoath. Then Eqs. 29 and 30 both become 

and so  

r 1 

L J 

Equations 27 and 31 thus give a lower bound on the rate  and distortion of any quantizer. 
We now res t r ic t  our attention only to the case of small  distortion, which is usually 

the region of practical interest. 
tization intervals being small  (or a t  least  all those for  which p(x) is not convex u). In 
this case, the second t e rm of Eq. 31 becomes negligible relative t o  the f i rs t ,  since 
E - 0 as the T - 0, and q .  is of the order  of T .  (see Appendix E for a rigorous t reat-  
ment of this  approximation). 

This assumption on D is equivalent to all of the quan- 

j j 3 J 
Thus for  small D, we can make the approximation 

and so 

2 qj(2Tj)' = Z V ( v t l )  D. 

j 

Substituting this  result  in Eq. 27, we have 

(32)  
1 Q(D) 2 H(X) - y l o g  Z V ( v t l )  D, 

which is really an  approximation, valid for  small D. 

Now if the random variable x is not bounded, the same resul t  may still be obtained 
if the contributions of the extrema1 intervals to  the entropy and distortion become 

Fig. 14. Additive noise channel. 

z 

negligible as the boundaries of these intervals are moved outward. 
We can give a plausability argument for  the assertion that under our assumption 
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that D is small, Eq. 32 is actually an equality. 
of whose intervals must be small ,  since D is small. 
be written 

Consider a uniform quantizer the length 
In this case,  the output y can 

y = x t z ,  

where z is a random variable that is approximately independent of x and uniformly 
distributed on (-T, T), where 2T is the quantizer interval length. 
looks approximately like an additive noise channel as shown in Fig. 14. 

Thus the quantizer 

The rate and distortion a r e  then found to be 

I(X; Y) = H(Y) - H(Y IX) 

= H(Y) - H(Z) 

= H(Y) - log 2T 

and 

D = E{d(y-x)} = E(d(z)} 

Thus 

T = [D(v+ l ) ]  1 /v 

and 

Since T will  be  small  if D is small, p(y) wi l l  be nearly equal t o  p(x), and so 

H(Y) =. H(X) 

by the same argument as that in section 3. 2. 

expression above to  become identical with the lower bound of Eq. 26. Although the der i -  
vation of this result  was not rigorous, the calculations of actual quantizers presented 
below leave little doubt as to its validity. 
perhaps find some comfort in the fact that this  resul t  w i l l  not be needed in the 
s e que 1. 

Replacing H(Y) with H(X) causes  the 

If the reader  is still unconvinced, he may 

The next step is to  find R(D), so that it can be compared with the lower bound on 
We shall use  the lower bound H(X) - +(D) as our estimate of R(D), since this Q(D). 

has  been shown to be a close approximation for  small  values of D. F o r  the distortion 
measure d(u) = I u I ', it has  been shown that 
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f rom which 

1 t log D t (log v t 1). 
V 

32 The detailed derivation of this result has  been given elsewhere. 
Thus we see that, for smal l  D, 

1 
R(D) H(X) -;log D - log 7 - V (log v t 1). 

We see  that the difference between this  expression and Eq. 32 is 

which is a constant, independent of D. 
levels, for  a distortion of the form d(u) = IuI”, quantizers are suboptimal as  a class 
of source encoders. 

Thus we have shown that at small distortion 

The extent of this suboptimality is given in Eq. 33. 

It is perhaps of interest  to note that any attempt to  derive a result  like the above 
W e  for  all D is doomed to failure because, clearly, at D = Dma, R(D) = Q(D) = 0. 

should also note that although quantizer rates a r e  strictly bounded away from R(D) at 
small  D, fo r  practical  purposes this difference as expressed in Eq. 33 is not very 
large. It is then a n  
engineering decision whether that extra 1/4 bit is worth the added complexity of the 
encoding equipment. 

Finally, the assumption of small  D is quite reasonable from an  engineering point 
of view. It seems very unlikely that a user would ever  be willing t o  tolerate a distortion 
level more  than from . 0 1  to . 1 of Dma. This would correspond to two-decimal digit 
accuracy in  reproducing a unit variance source with mean- square e r r o r  distortion. 

Experimental results seem to indicate that D = - 0 1  Dmax is easily small enough for  the 
approximations made above to be quite good. Finally, we  note that for  comparison pur- 
poses, we only know R(D) accurately for  small D, in any case. 

F o r  example, if v = 2, it comes out to be very nearly 1/4 bit. 

4 . 2  EXAMPLES 

The first example that we shall consider is that of a unifrom modular source (defined 
in section 2.4) with the difference distortion d(u) = Iu 1,  where u is the distance around 
the circle from x to  y. 
found exactly for  all D, without resorting to  any approximations. First, we can calcu- 
late R(D) by noting, as in section 3. 2, that for all D a uniform p(y) distribution satisfies 

F o r  this case,  both R(D) and the lower bound to Q(D) can be 

65 



sd( 4 
A(s)  

the condition that it convolves with e to give p(x). Therefore 

R(D) = H(X) - ND),  

and clearly 

H(X) = log 2T, 

where 2T i s  the circumference of the circle  that is the X space. F rom Eq. 21, 

where 

A(s)  = 1 esd@) du 

= 2  rT esu du 
J O  

2 sT =- [e  S -13. 

These expressions a r e  easy to evaluate by computer, and the resulting R(D) 

0.01 0.02 0.05 0.1 0.2 0.5 
D 

Fig. 15. Uniform modular source d(u) = lu 1 .  
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for  T = 1 is shown in Fig. 15. Note that as s becomes large negative, 

2 A(s) z - _  
S ’  

and so  

1 D = - -  
S 

and 

+(D) = log ZD t 1. 

Thus, since H(X) = log 2, 

1 
R(D) = log a. 

This  approximation is seen from Fig. 15 t o  be quite close for  D below approximately 
. 15. 

The derivation of a lower bound to  Q(D) for modular sources  is almost identical with 
In the case of a uniform source, however, it should be that of the previous section. 

pointed out that E .  = 0 for  all j ,  so  no approximations are needed to  obtain an expres- 
sion like Eq. 32. Since H(X ly=q.) = log 2T., where 2T. is the length of the jth interval, 

J J J 

J 

j 
H(Y) = H(X) - 1 qj log 2T 

j 

where 

j 
qj = Pr[y=q.] = - 

J T  

T 

and 
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rl- 

= log 2 2D ' (35) 

This bound is also plotted in Fig. 15 fo r  T = 1. F rom this,  we see that except at  R = 0,  

the minimum quantizer ra te  is strictly above R(D), and that for D below approximately 
. 15, the rate difference is 1 - log e 
tortion. 
to Q(D), we can see  that a uniform quantizer with n levels has  ra te  

2 nats, which corresponds to  a factor of 1. 35 in dis-  
Finally, with reference to our assertion that this  lower bound is actually equal 

H(Y) = log n 

and, from Eq. 34,  the distortion is 

1 since q .  = -  for all j. 
J n  

Setting T = 1 as before, we see that 

H(Y) = -log ZD, 

which shows that uniform quantizer rates and distortions fall on the lower-bound curve. 
F o r  our second example, we consider a unit variance Gaussian source with distor- 

F o r  this  case,  we know from sec- 2 tion measure d(u) = u , or mean-square e r ro r .  
tion 3. 2 that 

1 1 R(D) = -  2 logl5 

and, from Eq. 32, for small  D, 

Since fo r  a Gaussian source,  

1 2 H(X) =? log 2a ecr , 

w e  have 

Both of these functions a r e  plotted in Fig. 16. The vertical  difference between the curves 
is 

1 Q(D) - R(D) 2 T l o g  = . 175 nat 
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0.5 I 0.01 0.02 0.05 0.1 0.2 0.3 

Fig. 16. Rate and distortion of some minimum distortion quantizers. 
X = uniform quantization intervals. 
0 = unrestricted interval sizes. 

0.01 0.02 0.05 0.1 0.2 0.3 0.5 I .o 
D 

Fig. 17. R-D trajectories for  uniform n-level quantizers. 
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which comes out to be very nearly 1/4 bit. 
Also shown in Fig. 16 a r e  the points corresponding to  quantizers of minimum dis- 

tortion for  a fixed number of levels, which have been computed by Maxz1 for both uni- 
form and arbitrary spacing of the levels. Figure 17 shows the H-D trajectory as the 
length of the intervals of an equal-interval quantizer is varied, for  n, the number of 
levels, equal t o  4, 6, 10, and 16. This computation has  been carr ied out previously 
by G ~ b l i c k . ~  One interval boundary w a s  kept fixed at the origin, and the others were 
at rtt, *2t, and so forth, where the parameter  t w a s  variable. The point of smallest  
distortion on these trajectories is the same as Max's minimum distortion point fo r  equal 
spacings. 
shown here,  and small  values to the lower section. 
this  point is not at all optimal, lying far ther  from the R(D) curve than other points on 
the trajectory, and one can get the same distortion with smaller  rate by using more 
quantization levels. 

Large values of t correspond to the top (high-rate) portion of the trajectory 
Note that in  a rate-distortion sense,  

4. 3 DISCUSSION 

We have seen, a t  least  for  distortion measures  of the form Iul", that all quantizers 
a r e  suboptimal in a rate-distortion sense. 
encoder performance and that of the best  quantizer (indeed, that of most reasonable 
quantizers) is not great,  however, being approximately 1/4 bit in the case of mean- 
square error .  Furthermore,  it seems clear that good quantizers a r e  not difficult to 
find, judging from the resul ts  shown in Fig. 17, which shows that even uniform intervals 
come very close to the lower bound. 

The discrepancy between the best  possible 

The problem of finding practical schemes that perform better than quantizers is still 
One possibility is to increase the block length by going to  multidimensional quan- open. 

t izers ,  which t rea t  a sequence of source outputs as an n-vector, and whose output 

T 

Fig. 18. Quantizer space and a typical quantization 
region. 

specifies the region of n-space in which this  vector falls. 
in general is not at all c lear ,  nor is such a device necessarily easy to  implement. One 
example has been worked out - for  a uniform modular source with d(u) = Iu 1 ,  and n, 
the number of dimensions, equal to 2. The space to be quantized is thus a square with 
sides of length 2T, with opposite edges identified wi th  each other. This  is equivalent 

How to choose these regions 
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to a torus. 
angle to the axes, as shown in Fig. 18. 

where n is an integer, in order  for them to pack properly into the space. 
can easily see  that in  this case,  the rate per source output is 

The quantization regions a re  also chosen to  be squares,  oriented a t  a 45" 
2T The sides of these small  squares must be - 
\G' 

The reader  

1 R =-z log n 

and the average distortion is 

from which we obtain 

Comparing this ra te  with the lower bound for  one-dimensional quantizers, given by 

Eq. 35, 

3 we see that there  has  indeed been an improvement, but only log - = . 0 6  nat, out of 

the approximately . 3  that separates Q(D) from R(D). 
stantial improvement. 
particular distortion measure,  d(u) = ( u ( .  If instead d(u) = u2,  it is easy to see that 
there is no improvement because a rotation preserves the Euclidian metric. 

Another possibility for  an encoder would be one that finely quantizes each source 
output, and then performs further encoding on blocks of these outputs a s  though they 
were taken directly f rom a large-alphabet discrete source. This method would have 
the advantage that rea l  numbers would not have to  be stored, a s  was the case in the pre-  
vious scheme, but since the problem of practically encoding discrete sources is f a r  
from solved, it still leaves much to be desired. 

Z f i  
This could hardly be called a sub- 

Also note that even this small  gain is intimately connected to the 

A l l  in a l l ,  the engineer wi l l  have to  decide whether the fraction of a bit of improve- 
ment over the simple quantizer's performance is worth the increase (probably great) 
in the complexity of the encoding equipment. 
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V. SUMMARY AND CONCLUSIONS 

We have presented some contributions to the theory of encoding memoryless infor- 
mation sources with single-letter distortion measures ,  and some applications of this 
theory to practical systems. 
original, we have given a fair ly  thorough background and summary of this field because 
such a development does not seem to have been made elsewhere. 

Although most of the mater ia l  discussed in Section I is not 

In Section I1 a proof was presented of a general  form of the source-coding theorem 
and a discussion w a s  given of the capabilities of various classes  of source encoders. 
The main results, besides the proof of the coding theorem, were: a demonstration that 
the difference between R(D) and the rate  of an encoder can be made to decrease at least  

as fast as 7, where n, the encoder block length, is the number of source outputs 
operated on at  one time; a demonstration that variable-length codes a r e  more  powerful 
that block ones, and a statement of necessary and sufficient conditions under which the 
two classes  are equivalent; calculation of the rate of a source when the fidelity cri terion 
is that every le t ter  be reproduced with l e s s  than a specified distortion; and extension 
of the theory t o  allow several  fidelity cr i ter ia ,  and the encoding of source outputs after 
they have been corrupted by a noisy channel. 

log n 

Section I11 prepared the way for  the application of the theory by developing machinery 
by means of which R(D) can be calculated for several  interesting c lasses  of sources  and 
distortion measures. By using these methods, R(D) w a s  calculated for  discrete sources 
in the special case for which d . .  = 1 * 6.  ., which allows us  to find the minimum achiev- 
able probability of e r r o r  when signalling over a channel of given capacity. 

1J 1J 

Using the techniques developed in Section 111, we were able, in Section IV, to com- 
pare  the performance (in a rate-distortion sense) of simple quantizers with R(D). 
found that at small  D, quantizers could not approach R(D), but that the difference 
between the best quantizer ra te  and the minimum achievable w a s  usually a fraction of 
a bit. 

We 

A s  far a s  further research in this field goes, the author is not optimistic. Rea l  
sources  are usually very difficult to handle analytically, since they are likely to have 
dependencies between samples and, worse yet, the source may not even be stationary. 
Indeed, the actual statist ics of a source a r e  often not known at  all. Furthermore,  it 
is not always clear  what the proper distortion measure should be. 

The current situation in source encoding is that at the theoretical end, analytical 
resul ts  exist only for the simplest of sources and distortion measures  and, at the other 
end of the scale, encoders are being built for  complex sources by exploiting the peculiar 
characterist ics of the signal to be represented. Source coding theory can still offer no 
guidance in these cases.  
schemes are  nonexistent, unless, of course,  one wants to put such a simple-minded 
device as a quantizer in this class. 
channel coding, the small  payoff in source coding (1/4 bit better than quantizers 

Even for  simple sources,  practical  (constructive) encoding 

This lack is probably related to the fact that, unlike 
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. for  mean-square e r ro r )  has not motivated people to search for  such schemes. 
Probably the most promising line of further investigation l ies  not in additional purely 

theoretical development, but in attempts to Sridge the gulf between t h e x y  azc! practice. 
It would be of great  interest  to know R(D) for  sources with memory, since these usually 
approximate reality more closely than memoryless ones, but, as  w e  have mentioned, 
the binary Markov source with Hamming distance distortion has  thus far resisted sub- 
stantial efforts, and it is hard to believe that there a r e  many simpler cases than this  
one. The solution of such problems must therefore await the development of some new 
and more powerful mathematical techniques. It is possible, however, that examination 
of a particular source in the light of the theory w i l l  lead to  some improvements in the 
methods of encoding it. 

It would also be interesting to know how sensitive the resul ts  of this  theory are to  
variations in the source model o r  the distortion measure. 
a code designed for a memoryless source work when the source really has  memory. 
Finally, it would be desirable to have the results on quantizers in a neater form,  and 
even to  have some more  general  resul ts  about encoders with very  small  block lengths. 

In conclusion, though, it is the author's opinion that this  field of source coding, 
especially the theoretical aspects, w i l l  provide poor pickings, even for  that most 
omniverous and desperate of researchers ,  the graduate student in  search of a thesis. 

F o r  example, how we l l  does 
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APPENDIX A 

Encoding an Infinite-Level Discrete Source 

W e  shall show that an infinite-level discrete source with entropy H(X) can be encoded 
by a variable-length code with le t ters  taken from an L-letter alphabet with average code- 
word length satisfying 

H(X) S E C  H(X) t 1 ,  

where H(X) is expressed in base L units. 
to show that the K r a f t  inequality holds for  infinite alphabet sources. 
sources,  this result s ta tes  that the inequality 

The first step in establishing this resul t  is 
F o r  finite, M-letter 

i= 1 

is a necessary and sufficient condition for the existence of a prefix code with lengths 
{ni}, where L is the s ize  of the encoding alphabet. A proof of this has  been given by 
 fan^.'^ This result  follows from the fact that a code word of ni l e t te rs  (corresponding 

to a node of order  ni) removes the fraction L 
sideration. 
all code words does not exceed one. 

-n i of all possible nodes from further con- 
A code clearly exists if  and only if  the fraction of nodes thus eliminated by 

Now let u s  choose ni to be that integer such that 

1 1 log - C ni < log - t 1 ,  
L Pi L Pi 

where pi is the probability of the ith source letter. I t  follows that 

-n. 
1 pi 2 L 

and s o  

00 2 LniS Pi = 1, 

i= 1 i= 1 

so that the Kraft inequality is satisfied. Thus there  exists a code with these {ni}, and since 

the average length, ii = C n.p. satisfies 
1 1’ 

H(X) S 5 G H(X) t 1 ,  

which was to be shown. 
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APPENDIX B 

Source Coding Theorem for Block Codes 

In this  appendix, X and Y a r e  the input and reproduction alphabets respectively, 
p(x) i s  the source distribution, and d(x, y) is the single-letter distortion measure.  
Sequences of source and reproduction le t ters  will be denoted x= x1 . . . x and y = 

y1 . . . yn, respectively. 
- n 

The distortion between blocks is taken to be the sum 

i= 1 
A 

Subsequently, we  assume that p(x) and d(x,y) a r e  such that there  exists y E Y with the 
prop e r ty  

The proof of the source-coding theorem follows from the following lemma. 
Lemma: Suppose there  is a memoryless channel with input probabilities p(x) and 

transition probabilities p(y)x) ,  x E X, y E Y, and there  exists a $ as described above. 
Let 

and 

where both expectations a r e  with respect to the joint probability induced on X and Y 

by the channel. Then for  any E > 0, there  exists a block code of some length n with 

M = e  n(R * * 
code words and distortion l e s s  than D t E .  

Proof: With the usual random-coding argument, we choose each letter of M - 1 code 
words independently with probabilities q(y) , where 

X 

is the output distribution of the channel. 
which guarantees a finite distortion representation for all 5. 
smallest  distortion code word when 3 = x1 . . . xn is the source output, and let 

The last code word has y^ in  each position, 
Define ~ ( x )  - t o  be the 

Then clear ly  the distortion satisfies 

* E  D D tyt P D o max' 
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We shall now find the expected value of P Over the ensemble of codes. 
0 

Define the set  A of pa i r s  of source and output sequences: 

Let 

Then 

M- 1 

* E  
But for  YEA;, I ( ~ ; J )  6 n ( R t- 2 )  or 

- - 

so 

Since the right-hand side of this inequality is a convex u function of Pr(Aglz), which 

we write as f (  ),  then 

and averaging over all 2, 

Po 6 P(A) t exp 

By the law of large numbers, we  can find an n large enough so that P(A) is arbi-  

t ra r i ly  small, and since M = e n(R the argument of the exponential function 
-c --co as n -c w,  so  we can find an n for which 

8 
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. 
E <-, 

2Dmax 

which, when Substituted in Eq. B. 1, gives 

D S D* t E ,  

1 * 
and the rate ,  II log M, is R t E .  

the average calculated above, which completes the proof of the lemma. 
By the usual argument, there must be a code in the ensemble with Po a s  small  a s  

It is now merely necessary to note that if  {p(y Ix)} a r e  the transition probabilities 
of the optimum test  channel for the given source, distortion measure,  and tolerance 
level, then 

E{d(X,Y)) = D 

and 

I(X ; Y) = R(D), 

so  by the lemma, a block code exists with rate and distortion arbi t rar i ly  close to the 
R(D) and D above. 
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APPENDIX C 

Entropy of a Geometric Source 

We want t o  find the entropy H(X) for  an infinite-level discrete  source for which the 
th k le t ter  appears with probability 

p(k) = q(l-q)k-’. 

Then 

= - 1 q(l-q)k-l [ l o g q t  (k-1) log(1-q)] 

= -log q - q(1-q) log (1-q) ), (k-l)(l-q)k-2. 
k= I 

To do the remaining summation, we note that 

n-1 - d xn 
dx x -  

n= 0 n= 0 

d 1  
= dx (1-x) 

1 - - -  
2 ’  

(I-x) 

Replacing x with 1 - q, we  have 

and so 

(C. 1) 

Finally, to  obtain a useful upper bound on this entropy, we  can expand log (1-q) in 
(C. 1) in powers of q (since q < I ) ,  and w r i t e  



= -log q t 1. 
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APPENDIX D 

An Exponential Bound 

Gallager’ has  shown that if e . (  1 S j n) a r e  independent random variables,  then 
J 

L J 

where p(s) is  the semi-invariant moment-generating function of C. 5 .  and B is a com- 
plicated expression given by Gallager.Z8 This result  is derived by using a form of the 
Central  Limit theorem which is due to Berry. It states 

J ’  

where G(z) is the c. d. f. of the normalized sum, +(z) is the zero-mean, unit-variance 
Gaussian c. d. f. , C is a constant, and p 

fact (based on a theorem of Fel ler  
has been defined by Gallager. l 2  We use the 

3, n 29 ), that the numerator may be taken to be 

- 3 3x 
CP3,n - 4(+ c var  (6  .)) 1/2  ’ 

J 

where 

Writing these resul ts  in our notation, we have 

and 

where zo is specified by 
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Now since X is finite, there  are numbers pmax(s) and pmin(s) such that 

"t.lLmin(S) c px(s) nt.lm&s). 

W e  then have 

\ 

Finally, using the fact that for large n, 

we see that 

where B 
constant Bo such that 

is a constant (cf. Gallager3') and thus, for large enough n, we can find a 1 
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APPENDIX E 

On the Approximation in Section IV 

In section 4. 1,  a lower bound on the minimum quantizer entropy Q(D) w a s  derived. 
This expression could be put into a convenient and simple form by making the approxi- 
mation that fo r  all intervals for which p(x) was convex 0, the second t e rm of the inequal- 
ity 

becomes negligible relative to  the first, o r  equivalently that the ratio of the two 
approaches zero a s  T - 0. 

lowing theorem. 
Theorem: let p(x) be bounded away from zero and have a bounded derivative over 

the region where it is convex 0 (that i s ,  there  exist constants B and C such that p(x) > 
B and (pf(x) 1 < C for all  x in the region). 
Proof: Since the slope of p(x) is bounded by C ,  

Sufficient conditions for  this to hold a r e  given in the fol- 
j 

Then E.T./q. - 0 as T - 0. 
J J  J j 

‘j ‘ Pmax, j Pmin, j 

2 C Tj, 

and 

we have 

E.T. 
J J  

S Tj ,  - 
q j  

which vanishes as T - 0. Q. E. D. 
j 

It is easy t o  see  that a s  D - 0, all T .  for  intervals over which p(x) is nonzero must 
J 

approach zero, since every such interval makes a positive contribution to  the over-all  
distortion. Thus the approximation made in section 4. 1 is justified. 
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The theory of encodin memor less information sources so that the output can be t rans .  

tortion measure is investigated. This r e  ort  extends and amplifies the theory evelo ed b 
hannon. A general  proof of the Source &ding theorem for memoryless sources a n f s i n  

?etterdistortion measures  is presented usingvariable length codes. It is shown that t k :  
proof is more enerally applicable than Shannon's previously derived block coding resu l t s  
knoreover,witaout some additional restrictions, the coding theorem is false i f  only block 
codes a r e  permitted. It is also shown that the conver ence of encoder ra te  CO R(D) (the min 
imumrate  necessary to achieve average distortionD7 with increasing block length n, can be 
made at  least  as fast  as log n)/n. Equivalent theories of source coding a r e  developed for 

hana fixed distortion, rather than merelyachievin .this erformance on the avera  e;(ii 
. there  a r e  several  fidelity cr i ter ia  that must be saf isf ief  simultaneous1 ; and (iiif the 
Lource outputs a r e  corrupted b a nois channel before bein furnishedrto the encoder 
Means of calculatin o r  estimaring R(D7 for sources with a fifference distortion mea- 
su re  a r e  developed%y showing conditions under which R(D) is equal to a more easily 
calculable lower bound developed by Shannon. Even when equality does not hold,we shon 
that R(D) approaches this bound as D - 0 for all continuous sources,and that for discrete 
sources,  there  is alwa s a nonzero region of small  D where there is equality. R D) fo1 

wher 
transmitting over a channel of given capacity. Finally, as an  application of the t%eory 
we examine quantizers as a c lass  of source encoders, and show that the r a t e  

close. 

3 mitted with minimum ra s e and s t i  5 1 satisfy a fidelity criterion*based on a s in  l e  letter dis 

cases  in which: (i) the f idelity cri terion requires every letter to be reproduced with l e s s  

a discrete source and &stortion measure d.. 1 - 6..  is calculated exactly for a i 1 D, 

entropy) and distortion of such devices is bounded away from R(D), but is usua f ly quitt 

13 1J 
hereby allowing calculation of the minimum achievable symbol e r r o r  probabilit 

output 

I Distribution of this report  is unlimited. 
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